

NOAA Technical Memorandum NMFS-AFSC-454

# Genetic Stock Composition Analysis of Chum Salmon from the Prohibited Species Catch of the 2021 Bering Sea Walleye Pollock Trawl Fishery

P. D. Barry, C. M. Kondzela, J. A. Whittle, J. T. Watson, K. Karpan, K. D'Amelio, and W. A. Larson

November 2022

U.S. DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature.

The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-NWFSC series is currently used by the Northwest Fisheries Science Center.

This document should be cited as follows:

Barry, P. D., C. M. Kondzela, J. A. Whittle, J. T. Watson, K. Karpan, K. D'Amelio, and W. A. Larson. 2022. Genetic stock composition analysis of chum salmon from the prohibited species catch of the 2021 Bering Sea walleye pollock trawl fishery. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-454, 50 p.

This document is available online at:

Document available: https://repository.library.noaa.gov

Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA.



# Genetic Stock Composition Analysis of Chum Salmon from the Prohibited Species Catch of the 2021 Bering Sea Walleye Pollock Trawl Fishery

P. D. Barry, C. M. Kondzela, J. A. Whittle, J. T. Watson, K. Karpan, K. D'Amelio, and W. A. Larson

Auke Bay Laboratories Alaska Fisheries Science Center National Marine Fisheries Service National Oceanic and Atmospheric Administration 17109 Lena Point Loop Road Juneau, AK 99801

## **U.S. DEPARTMENT OF COMMERCE**

National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center

NOAA Technical Memorandum NOAA-TM-AFSC-454

November 2022

#### ABSTRACT

We analyzed genetic stock compositions of chum salmon (Oncorhynchus keta) prohibited species catch (PSC), referred to as "bycatch", samples collected from the 2021 walleye pollock (Gadus chalcogrammus) trawl fishery in the Bering Sea. Samples were genotyped for 84 single nucleotide polymorphism markers from which stock contributions were estimated using a rangewide chum salmon baseline developed by the Alaska Department of Fish and Game. The chum salmon bycatch was 546,043 fish, the second highest bycatch number since 1991 and considerably higher than the 10-year average of 257,023. Despite the large incidence of chum salmon bycatch early in the year and relatively close to the Alaska Peninsula where higher proportions of coastal western Alaska fish are expected, the combined proportion of Western Alaska and Upper/Middle Yukon fish was 9.4%, which was similar to the proportion in 2020, but substantially less than the recent (10-year) long-term average of 20%. The total number of Western Alaska and Upper/Middle Yukon chum salmon caught as PSC in the Bering Sea Bseason in 2021 was estimated to be 51,510 fish. Despite the large total PSC in 2021, the number of Western Alaska fish caught is similar to the long-term average of 49,290 from 2011 to 2020. We hypothesize that the relatively low proportion of Western Alaska fish reflects their recent low run sizes but cannot rule out other factors such as fleet behavior or differences in chum salmon distribution. Fish from Asia were by far the most numerous stocks in our bycatch samples (68%), with Northeast Asia contributing 55.7% and Southeast Asia contributing 11.9%. The Eastern Gulf of Alaska/Pacific Northwest (EGOA/PNW) stock contribution (20%) was down substantially from the high proportion observed in 2020 (42.5%). Over the last 11 years the relative contributions of Northeast Asia and EGOA/PNW stocks were negatively correlated (r = -0.86) with large proportions from Asia coinciding with small proportions from the EGOA/PNW and vice versa. Stock estimates on finer-scale spatial and temporal strata were generally consistent with prior observations.

# CONTENTS

| ABSTRACT                                                                    | iii |
|-----------------------------------------------------------------------------|-----|
| INTRODUCTION                                                                | 1   |
| METHODS                                                                     | 1   |
| Bycatch Sampling and Genotyping                                             | 1   |
| Mixed Stock Analysis                                                        | 3   |
| SAMPLING DISTRIBUTION                                                       | 6   |
| BYCATCH SUMMARY                                                             | 7   |
| Temporal Trends                                                             | 7   |
| Spatial Trends                                                              | 8   |
| GENETIC STOCK COMPOSITION                                                   | 10  |
| Overall Trends                                                              | 10  |
| Temporal Trends                                                             | 13  |
| Spatial Trends                                                              | 14  |
| Spatiotemporal Trends                                                       | 15  |
| Age Trends                                                                  | 16  |
| Sector Trends                                                               | 17  |
| Excluder Device Experimental Trawls                                         | 18  |
| Summary for Western Alaska, Upper/Middle Yukon, and Southwest Alaska stocks | 20  |
| ACKNOWLEDGMENTS                                                             | 22  |
| CITATIONS                                                                   | 24  |
| APPENDIX A – GENETIC MARKERS                                                | 30  |
| APPENDIX B – GENETIC BASELINE                                               | 32  |
| APPENDIX C – SPATIAL CLUSTERS OF ADF&G STATISTICAL AREAS                    | 38  |
| APPENDIX D – GSI ESTIMATES                                                  | 40  |

#### **INTRODUCTION**

Pacific salmon (*Oncorhynchus* spp.) are prohibited species in the federally managed Bering Sea and Gulf of Alaska (GOA) groundfish fisheries, which are subject to complex management rules (NPFMC 2020a, b) that are in part designed to reduce prohibited species catch (PSC). It is important to understand the stock composition of Pacific salmon caught in these fisheries, which take place in areas that are known feeding habitat for multiple brood years of chum salmon (*O. keta*) from many different localities in North America and Asia (Myers et al. 2007, Davis et al. 2009, Urawa et al. 2009). Determining the geographic origin of salmon caught in federally managed fisheries is essential for understanding the effects that fishing has on chum salmon stocks, especially those with conservation concerns (NPFMC 2012).

We present the genetic stock composition estimates for the samples of chum salmon PSC collected during 2021 from the U.S. Bering Sea walleye pollock (*Gadus chalcogrammus*) trawl fishery. In 2021, the Bering Sea pollock fishery accounted for 99% of the total chum salmon taken in the groundfish fisheries (NMFS 2022a). The samples collected from the 2021 GOA groundfish fisheries were not analyzed due to restricted access to the laboratory during the COVID-19 pandemic.

For additional background and methods, this report is intended to be supplemented with the chum salmon reports prepared previously for the 2005-2020 Bering Sea trawl fisheries (Barry et al. 2022; Gray et al. 2010, 2011a, b; Guyon et al. 2010; Kondzela et al. 2012, 2013, 2016, 2017, 2021; Marvin et al. 2011; Vulstek et al. 2014; Whittle et al. 2015, 2018, 2021a, b). The chum salmon PSC is designated as non-Chinook (*O. tshawytscha*) in the NMFS database and comprises over 95% of the non-Chinook category in the Bering Sea (NPFMC 2007).

#### **METHODS**

#### **Bycatch Sampling and Genotyping**

Data from the Alaska Fisheries Science Center (AFSC) Fisheries Monitoring and Analysis North Pacific Observer Program (Observer Program), total chum salmon bycatch, and genetic sample information were downloaded from the AFSC schema in the Alaska Fisheries Information Network (AKFIN)database (NMFS 2022b). The Auke Bay Laboratories (ABL) Genetics Program received 16,371 genetic samples from the Bering Sea and 244 samples from the Gulf of Alaska (GOA) that were collected by the Observer Program in 2021. Due to the small number of samples and the accelerated time frame of this reporting cycle, the GOA chum salmon samples were not analyzed. Previous reporting indicated that nearly all chum bycatch samples from the GOA are from Eastern Gulf of Alaska/Pacific Northwest (EGOA/PNW) stocks.

Biases and errors associated with non-systematic collections of genetic samples from the salmon bycatch have the potential to affect stock composition estimates (NMFS 2009, Pella and Geiger 2009). Since 2011, the bycatch in the Bering Sea has been sampled with a systematic sampling protocol (Pella and Geiger 2009) to reduce sampling error and bias. We evaluated the sampling proportions by plotting the bycatch by statistical week and NMFS statistical area and using a Chi-square test where statistical weeks were pooled if the expected number of genetic samples was fewer than five.

After inventorying the genetic samples received, a 1-in-5 subsample was conducted for genotyping. DNA from 4,069 genetic samples, 25.0% of the total genetic samples collected by the Observer Program, was extracted and amplified for the 84-single nucleotide polymorphism (SNP) locus GT-seq panel (See Appendix A Table A-1). The subsample exceeded the target of 20% (1-in-5 subsample) in order to obtain adequate sample sizes for smaller spatiotemporal strata (e.g., Cluster 4 Late). Samples that were not genotyped for greater than 80% of the GT-Seq panel (minimum of 68 loci) were omitted from analyses. Of the 4,069 samples amplified, 3,534 (86.3%) were of adequate quality to include for stock composition analyses (21.6% of the total sample collection).

We re-amplified and genotyped 3% of the subset samples for quality control. The allele calls of these quality control samples were compared with the allele calls from the originally genotyped samples to estimate the genotyping error rates. The average agreement over loci was 99.2%, and the average agreement among individuals was also high (98%), indicating high genotyping accuracy and correct sample organization.

2

#### **Mixed Stock Analysis**

Sequencing libraries were prepared using the Genotyping-in-Thousands by Sequencing (GT-seq) protocol (Campbell et al. 2015). Polymerase chain reaction (PCR) was performed on extracted DNA with primers that amplify 84 SNP loci in the WASSIP chum panel (DeCovich et al. 2012; Appendix A Table A-1). The PCR products were then indexed in a barcoding PCR, normalized with SequalPrep<sup>TM</sup> plates and each 96-well plate subsequently pooled. Next, a double-sided bead size selection was performed using AMPure XP beads (Beckman Coulter) in ratios of 0.5× beads-to-library to remove larger non-target fragments and then 1.2× to retain the desired amplicon. Libraries were sequenced on a MiSeq<sup>TM</sup> System (Illumina) using a single 150-cycle lane run with 2 × 75 bp paired-end chemistry. Paired-end reads for each individual were joined with FLASH2 (Magoč and Salzberg 2011; https://github.com/dstreett/FLASH2). Merged reads were genotyped with the R package GTscore (McKinney;

https://github.com/gjmckinney/GTscore). Individuals with low quality multi-locus genotypes (< 80% of loci scored) were discarded.

Mixtures of genotypes were created by separating sampled fish into spatial and temporal strata from Observer Program data in the AKFIN database. Genetic stock identification was performed with the conditional genetic stock identification model in the R package rubias (Moran and Anderson 2019). Mixture genotypes were compared to the WASSIP baseline (DeCovich et al. 2012; Fig. 1, Appendix B Table B-1) in which populations were grouped into regions that were consistent with prior analyses based on the Fisheries and Oceans Canada chum salmon microsatellite baseline (Beacham et al. 2009a, b). As described previously (Gray et al. 2010) and with minor changes to regional group names, baseline populations were grouped into six regions: Southeast Asia (SE Asia), Northeast Asia (NE Asia), Western Alaska (W Alaska), Upper/Middle Yukon (Up/Mid Yukon), Southwest Alaska (SW Alaska), and the Eastern Gulf of Alaska/Pacific Northwest (EGOA/PNW; Fig. 1; Appendix B Table B-1). For all estimates, the Dirichlet prior parameters for the stock proportions were defined by region to be  $1/(GC_a)$ , where  $C_g$  is the number of baseline populations in region g, and G is the number of regions. To ensure convergence to the posterior distribution, six separate MCMC chains of 100,000 iterations (burnin of 50,000) of the non-bootstrapped model were run. Each chain was started at disparate values of stock proportions and configured such that for each chain 95% of the stocks came from a

single region (with probability equally distributed among the populations within that region) and the remaining 5% equally distributed among remaining stocks from all other regions. The convergence of chains for each region was assessed with the Gelman-Rubin statistic (Gelman and Rubin 1992) estimated with the gelman.diag function in the coda library (Plummer et al. 2006) within R. Once chain convergence was confirmed, inference was conducted with the conditional genetic stock identification model with bootstrapping over regions (MCMC chains of 100,000 iterations, burn-in of 50,000, 100 bootstrap iterations).

The stock composition estimates were summarized by the mean, median, 95% credible interval (2.5th and 97.5th percentile of the MCMC iterates in the posterior output), and P = 0, which is the probability that a stock composition estimate is effectively zero (Munro et al. 2012). The P = 0 statistic is the frequency of the last half of the MCMC iterates of each chain for which the individual regional contribution to the mixture was less than a threshold of  $0.5E^{-6}$ . This statistic may be more useful than the credible interval for assessing the presence or absence of minor stocks.



Figure 1. -- Six regional groups of baseline chum salmon populations used in this report, circles represent individual populations in the baseline. (A) Range wide distribution of the six regions, (B) SE Asia (red) and NE Asia (orange), (C) W Alaska (yellow) and Up/Mid Yukon (medium blue), (D) SW Alaska (purple), and (E) EGOA/PNW (dark blue). For a complete list of populations within each region see Appendix B Table B-1.

#### SAMPLING DISTRIBUTION

Genetic sampling among statistical weeks and NMFS statistical areas was representative of the overall bycatch ( $\chi^2 = 728$ , df = 676, p = 0.08), yet there was some evidence of undersampling. In NMFS area 509 during week 29 the sampling proportion (0.21) deviated from the goal of 1-in-30 (Fig. 2). Of the 43 observers that sampled hauls/offloads from NMFS area 509 during week 29, 3 observers accounted for all hauls, 21 in total, where the discrepancy between the observed and expected number of genetic samples differed by more than 10 fish. In all but one case the number of genetic samples collected was 0. Examination of the sampling rate of each of these three observers for weeks prior, suggests that an exhaustion of sampling supplies may explain under-sampling issues. When evaluated on a per vessel basis, the correlation between the number of genetic samples collected followed the 1-in-30 Observer Program sampling protocol (r = 0.97; AFSC 2020); however, the bycatch from nine vessels were underrepresented by greater than 100 genetic samples. The bias introduced from under-sampling in space and time appears to be minimal suggesting that the genetic samples taken were representative of the overall bycatch.



Figure 2. -- Sampling proportion of chum salmon prohibited species catch for the B-season from the 2021 Bering Sea pollock trawl fishery by statistical week and NMFS areas. The mean sampling proportion (0.031) is slightly less than the 1-in-30 sampling protocol (dashed red horizontal line).

#### **BYCATCH SUMMARY**

## **Temporal Trends**

The chum salmon prohibited species catch (PSC), referred to as "bycatch" throughout this report, in the Bering Sea walleye pollock trawl fishery was 546,043 fish in 2021, with 545,883 from the B-season (NMFS 2022a; Fig. 3). This was 273,603 fish more than the 10-year average of 257,023 (SD 126,526). As is typical, over 99% of the bycatch of chum salmon occurred in the B-season (between June and October).



Figure 3. -- Chum salmon prohibited species catch (PSC) for the A- and B-seasons from the Bering Sea pollock trawl fishery. The solid horizontal line represents the mean PSC and the dashed line represents the median PSC from 1991 to 2020.

Within the B-season, the chum salmon bycatch was bimodally distributed with peaks occurring in weeks 29 and 32 (Fig. 4, top panel). Overall, the timing of the bycatch fell between the early catches in 2017 and 2018 and the later catch in 2020 (Fig. 4, bottom panel).



Figure 4. -- Number of chum salmon caught during the B-season (top) and cumulative proportion of chum salmon catch (bottom) from the Bering Sea pollock trawl fishery by statistical week for years 2016 to 2021.

# **Spatial Trends**

The geographical distribution of the chum salmon bycatch was concentrated closer to the Alaska Peninsula in 2021 relative to prior years (Fig. 5). Of the spatial clusters previously defined by the AFSC-ABL Genetics Program (Appendix C Table C-1), most of the bycatch occurred in clusters 1 and 2, with the highest bycatch from Alaska Department of Fish and Game (ADF&G) groundfish statistical area 685530.



Figure 5. -- Spatial distribution of chum salmon bycatch caught in the 2021 Bering Sea B-season pollock fishery. ADF&G groundfish statistical areas are highlighted based on the four geographic strata assigned in prior genetic analyses. For a complete list of ADF&G statistical areas included in each cluster see Appendix C Table C-1.

To evaluate shifts in the distribution of the chum salmon bycatch, the centroid (center of the bycatch) was calculated for each year by fishing sector: catcher-processor (CP), mothership (M), and shoreside (S). The spatial arrangement of the centroid was investigated for associations with sea surface temperature (not shown) and sea ice extent anomaly. The centroid of the 2021 chum salmon bycatch for the catcher-processor sector was the most eastern of the time series (2011-2021; Fig. 6, CP). It also appears that in years with more sea ice (less negative sea ice extent anomalies), the centroid of the catcher-processor sector is farther west than in years with less sea ice (more negative sea ice extent anomalies). Similar to the catcher-processor sector, the 2021 centroid for the mothership sector was closer to the Alaska Peninsula than typical (Fig. 6, M) and was similar to years 2016 and 2017. The distribution of the shoreside sector centroids is much more concentrated than the catcher-processor and mothership sectors and may be

influenced less by sea ice extent and sea surface temperature than the more mobile fishing sectors.



Figure 6. -- Change in the spatial distribution of chum salmon bycatch as measured by the centroid of the bycatch by sector; catcher-processor (CP), mothership (M), and shoreside (S). Point sizes reflect the relative size of the bycatch and point colors reflect the sea ice extent anomaly between June and September.

#### GENETIC STOCK COMPOSITION

#### **Overall Trends**

Western Alaska stocks comprised 8.9% of the bycatch which is similar to the contribution in 2020 and less than the long-term average from 2011 to 2020 of 15.7% (Table 1, Fig. 7). SW Alaska and the Up/Mid Yukon stocks also comprised relatively minor portions of the bycatch, 2.4% and 0.5%, respectively. Consistent with prior years, Asian stocks comprised a substantial fraction (67.5%) of the chum salmon bycatch in 2021. Of the chum salmon bycatch in the B-season, the contribution from the NE Asia stocks (55.7%) was the highest since systematic sampling of the bycatch was undertaken in 2011 (Fig. 7). The EGOA/PNW stocks accounted for (20.6%) of the bycatch, which is substantially less than the composition in 2020 (43%) and slightly less than the long-term average of 27.5% (Fig. 7).

There is a cyclical pattern of contribution between the NE Asia and EGOA/PNW stocks (Fig. 7) with a negative correlation (Fig. 8; r = -0.86, p < 0.001). Additionally, these two stocks comprise an increasing proportion of the bycatch through time, starting at a low of 56.2% in 2011 to a high of 76.3% in 2021. The recent, large declines in run size of western Alaska chum salmon (JTC 2022) may have led in part to a relative increase in the proportion of the NE Asia

and EGOA/PNW stocks; however, there is also some evidence that the NE Asia run sizes are increasing (Ruggerone and Irvine 2018).

Table 1. -- Regional stock composition estimates of chum salmon from the 2021 Bering Sea Bseason pollock fishery (PSC = 545,883; n = 3,534 samples). The estimated number of chum salmon bycatch and credible interval, and mean proportion are provided with 95% credible intervals, median estimate, P = 0 statistic, and the Gelman-Rubin shrink factor (SF).

| Region       | Est. num. | Est. CI         | Mean  | 2.5%  | Median | 97.5% | P=0  | SF   |
|--------------|-----------|-----------------|-------|-------|--------|-------|------|------|
| SE Asia      | 64,692    | 58,644-70,934   | 0.119 | 0.107 | 0.118  | 0.130 | 0.00 | 1.00 |
| NE Asia      | 303,892   | 294,418-313,399 | 0.557 | 0.539 | 0.557  | 0.574 | 0.00 | 1.00 |
| W Alaska     | 48,656    | 43,208-54,367   | 0.089 | 0.079 | 0.089  | 0.100 | 0.00 | 1.00 |
| Up/Mid Yukon | 2,854     | 1,324-4,778     | 0.005 | 0.002 | 0.005  | 0.009 | 0.00 | 1.00 |
| SW Alaska    | 13,175    | 9,225-17,521    | 0.024 | 0.017 | 0.024  | 0.032 | 0.00 | 1.00 |
| E GOA/PNW    | 112,611   | 105,032-120,388 | 0.206 | 0.192 | 0.206  | 0.221 | 0.00 | 1.00 |

B-season (PSC = 545,883; n = 3,534)



Figure 7. -- Annual bycatch estimates of B-season chum salmon bycatch from 2011 to 2021; (A) stock proportions with 95% credible intervals and (B) estimated number of chum salmon with 95% credible intervals.



Figure 8. -- Correlation between NE Asia and EGOA/PNW stock proportions of chum salmon bycatch from the Bering Sea B-season pollock trawl fishery from 2011 to 2021 (r = -0.86).

#### **Temporal Trends**

The B-season was divided into Early (pre-week 30), Middle (weeks 30-34), and Late (post-week 34) time periods to evaluate whether stock contributions changed through the season. The catch composition changed among the time periods for some stocks (Fig. 9). The EGOA/PNW stocks increased from 21.0% and 19.4% in the Early and Middle time periods, respectively, to 29.6% in the Late time period. Since 2011, the average contribution of GOA/PNW stocks has increased from 16.1% in the Early period to 24.7% and 34.8% in the Middle and Late periods, respectively. The contribution of the NE Asia stocks peaked in the Middle time period, increasing from 50.1% in the Early time period to 58.4% in the Middle time period, and declined to 43.7% in the Late time period. The Western Alaska stocks had no significant temporal pattern; however, historically Western Alaska stocks have contributed more to early catches. Since 2011, the average contribution of the Western Alaska stocks decreased from 19.2% to 17.8% and 12.6% in the Early, Middle, and Late time periods, respectively. The Up/Mid Yukon increased from 1.5% to 3.2% between the Early and Late time periods, however the credible intervals overlap. This was in contrast to the long-term historic pattern in which the Up/Mid Yukon stocks have, on average, contributed more to early catches. Between 2011 and 2020, the average contribution of the Up/Mid Yukon stocks decreased from 6.0% to 3.0% and

3.7% in the Early, Middle, and Late time periods, respectively. Contributions from SW Alaska stocks generally decrease over the season, and this was consistent in 2021. The SW Alaska stocks contributed 5.1% in the Early time period and decreased to 0.5% in the Late time period. From 2011 to 2020 the long-term average for the Early period was 2.5% and the Late time period was 1.8%.



Figure 9. -- Stock composition estimates and 95% credible intervals for the chum salmon bycatch from the Early, Middle, and Late time periods of the 2021 Bering Sea Bseason pollock fishery.

#### **Spatial Trends**

Analyses in which the bycatch has been divided into mixtures based on longitude, with 170°Was the dividing line, have historically shown that the relative contributions of the Western Alaska, Up/Mid Yukon, SW Alaska, and EGOA/PNW stocks generally increase in the southeastern portion of the Bering Sea, closer to the Alaska Peninsula. In 2021, this was true for the point estimates of the Western Alaska, SW Alaska, and EGOA/PNW stocks, although the 95% credible intervals overlapped substantially (Fig. 10). Uncharacteristically, the contribution of Up/Mid Yukon stocks was higher from bycatch west of 170°W (2.6%) than east of 170°W (0.3%), a pattern also observed in 2013 (9.2% west and 4.8% east of 170°W). The relative contribution of the Asian stocks, alternatively, are generally larger for mixtures west of 170°W. This was true for the SE Asia stocks, which comprised 20% of the bycatch west of 170°W and

11.1% of the bycatch east of 170°W. The NE Asia stocks contributed slightly more to catches east of 170°W (Fig. 10), although due to the small sample size, the credible interval around the west of 170°W mean estimate was large.



Figure 10. -- Stock composition estimates and 95% credible intervals for the chum salmon bycatch from the 2021 Bering Sea B-season pollock fishery from the U.S. waters of the Bering Sea west of 170°W and the southeastern Bering Sea east of 170°W.

#### **Spatiotemporal Trends**

The ABL Genetics Program previously separated the Bering Sea into finer-scale spatial strata (4 clusters of ADF&G statistical areas; Appendix C Table C-1; Fig. 5) and temporal strata (Early and Late time periods) to evaluate spatiotemporal stock contributions. Because the bycatch distribution was geographically contracted in 2021, too few samples were available from cluster 4 (Fig. 11) for analyses. Additionally, an insufficient number of samples were available to analyze the Late time period for cluster 2.

Stock composition estimates of chum salmon bycatch from the 2021 spatiotemporal strata were mostly consistent with historic trends. The Asian component primarily decreased from west to east and from Early to Late (Fig. 11, left panels). The Western Alaska contribution was similar across spatial clusters in the Early time period, but had a higher mean estimated proportion in cluster 1 than cluster 3 in the Late time period, albeit with overlapping credible

intervals. The EGOA/PNW stock increased from Early to Late and west to east with the largest contribution in cluster 1, which is nearest to the Alaska Peninsula (Fig. 11, right panel).



Figure 11. -- Stock composition estimates for the chum salmon collected from four spatial clusters along the continental shelf edge during Early (Weeks 24-32) and Late (Weeks 33-43) time periods of the 2021 Bering Sea B-season pollock fishery. Clusters are ordered from west (cluster 3) to east (cluster 1); see map in Fig. 5 and Appendix C.

### **Age Trends**

The total age of individual fish was estimated as the number of freshwater and saltwater annuli formed on the scale plus one to account for the winter spent rearing in fresh water. A total of 3,459 chum salmon were aged. Of those, 3,028 had genotypic information and were included in stock composition analyses.

Historically, age-3 chum salmon are dominated by EGOA/PNW stocks, and the age-4 and age-5 chum salmon have been overwhelmingly from NE Asian stocks, a pattern supported by maturation at an earlier age in southern stocks and at a later age in northern stocks (Salo 1991). In 2021, Western Alaska stocks comprised an average of 9.4% of age-3 and age-4 fish, but only 3.6% of age-5 fish. The Up/Mid Yukon stocks had relatively similar representation across age classes (0.8%). The most common age for fish from SW Alaska stocks was age-4, with much less representation in other age classes. SE Asia stocks contributed an equal

proportion to age-3 and age-5 fish (19.7%). The EGOA/PNW stocks comprised 41.1% of age-3 fish compared to 11.2% of age-4 fish and 15.1% of age-5 fish. NE Asia stocks comprised 29.2% of age-3 fish, and 67.4% and 59.2% of age-4 and age-5 fish, respectively (Fig. 12). Additional stock estimates for many combinations of age, time, and spatial strata are available in Appendix D.



Figure 12. -- Stock composition estimates for the three predominate ages of chum salmon bycatch from the 2021 Bering Sea B-season pollock fishery.

## **Sector Trends**

Stock contributions to the 2021 chum salmon bycatch from each fishing sector were generally consistent with historic patterns. The Alaska stock contributions were low, and within each region, similar by fishing sector (Fig. 13). The NE Asia stocks comprised the majority of the chum salmon bycatch (> 50%) from all three fishing sectors. The three fishing sectors had similar (< 14%) stock contributions from SE Asia stocks because so much of the fishing was centered closer to the Alaska Peninsula for all three sectors in 2021 (compared to 2020). The catcher-processor sector had a lower contribution of EGOA/PNW stocks than the shoreside and mothership sectors.



Figure 13. -- Stock composition estimates for chum salmon bycatch from the 2021 Bering Sea Bseason pollock fishery from the catcher-processor, shoreside, and mothership fishing sectors. (A) Stock proportions with sample sizes for mixture analysis in the legend. (B) Estimated number of chum salmon with total bycatch for each fishing sector in the legend.

#### **Excluder Device Experimental Trawls**

In July of 2021, three experimental trips were conducted with a trawl equipped with a salmon excluder device. Seven hauls were made and 499 chum salmon genetic samples were collected. We conducted mixed stock analysis of samples from each trip, combining all hauls within a trip, as well as from individual hauls with at least 70 genetic samples. These analyses provide insight on whether individual hauls are typically comprised of a single stock group or are mixtures of multiple stocks and more reflective of the bycatch stock composition in a given area and time period. Of the 499 genetic samples collected, 445 were successfully genotyped (89.2%). We analyzed each of the three trips (Cruises 1, 3, and 4), with a single haul in Cruise 1,

three hauls in Cruise 3, and three hauls in Cruise 4. The sample sizes from each of the three hauls in Cruise 3 were too small to analyze individually; however, the three hauls in Cruise 4 were large enough to be analyzed individually. The stock composition estimates from these Cruises and individual hauls were compared with the most similar spatial and temporal strata available from analysis of observer collected bycatch samples. Cruise 1 and Cruise 3 hauls were compared with Cluster 1 Early, and Cruise 4 hauls were compared with Cluster 2 Early (Fig. 14).

Stock estimates of chum salmon caught in the 2021 experimental salmon excluder device cruises and individual hauls were generally reflective of the stock estimates of bycatch from larger aggregations of fishery hauls over similar spatial and temporal strata (Appendix D). Cruise 1 and Cruise 3 occurred 5 days apart near the Alaska Peninsula in Cluster 1. Mean stock estimates from Cruise 1 and Cruise 3 and bycatch from Cluster 1 Early were similar with nearly all 95% credible intervals overlapping within each region (Fig. 14, top panel). Cruise 4 occurred farther west than Cruises 1 and 3, within Cluster 2 (see map in Fig. 5). While there was some variation in the mean estimate for each region across hauls, nearly all 95% credible intervals overlapped.



Figure 14. -- Stock composition estimates for chum salmon caught in experimental salmon excluder device cruises from the Bering Sea in 2021. Sample sizes for mixture analysis are given in the legend. Stock composition estimates were compared with results from the most similar bycatch spatial and temporal strata (Cluster 1 and Cluster 2, see map in Fig. 5).

The 2021 results are consistent with analyses of excluder device samples from 2015 in which each haul was a mix of stocks and generally more similar to the overall bycatch samples pooled across larger areas and time periods (Kondzela et al. 2017). The consistency in these patterns both among hauls within a year and between years suggests that stock-specific bycatch avoidance measures likely would not benefit from trying to optimize stock-specific catch rates at the individual haul level.

#### Summary for Western Alaska, Upper/Middle Yukon, and Southwest Alaska stocks

The 2021 chum salmon bycatch from the Bering Sea was the second highest since 1991, occurred in two pulses during statistical weeks 29 and 32, and was caught predominately in the southeastern portion of the pollock fishing grounds. Despite the pollock fishery proximity to the Alaska Peninsula in 2021, the relative contribution of the Western Alaska, Up/Mid Yukon, and SW Alaska stocks was relatively low, with a combined contribution of 11.9%, which when multiplied by the total bycatch expands to 64,685 fish. Thus, while the amount of chum salmon bycatch in 2021 was high, the number of fish caught from Western Alaska, Up/Mid Yukon, and SW Alaska stocks was average or below average.

#### ACKNOWLEDGMENTS

We are grateful for the help from the AFSC's Fisheries Monitoring and Analysis Division, and the many participating observers who provided genetic samples. Thanks to Rob Ames, Camille Kohler, Matt Callahan, and Bob Ryznar for developing AKFIN Answer reports that helped us develop new strata for genetic analyses and tabulate strata specific PSC numbers. Particular thanks go to Noelle Yochum and the RACE division for collecting excluder device samples to evaluate individual haul bycatch collections. We also appreciate the work of Bev Agler, Jodi Neil, and the rest of the ADF&G Mark, Tag, and Age Laboratory staff for conducting age analysis accurately and efficiently, and Dave Nicolls at ABL for mounting and pressing the scales. We are grateful to Katie Howard, Dani Evenson, and Tyler Dann of ADF&G for their thoughtful reviews of this report. Special thanks to AFSC Communications Program staff, especially James Lee, for their rapid and thorough editorial review of this document.

#### CITATIONS

- AFSC (Alaska Fisheries Science Center). 2020. 2021 Observer sampling manual. Fisheries Monitoring and Analysis Division, North Pacific Groundfish Observer Program. AFSC, 7600 Sand Point Way N.E., Seattle, Washington, 98115.
- Barry, P. D., C. M. Kondzela, J. A. Whittle, J. T. Watson, K. Karpan, K. D'Amelio, and W. A. Larson. 2022. Genetic stock composition analysis of chum salmon from the prohibited species catch for the 2020 Bering Sea walleye pollock trawl fishery. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-453, 50 p.
- Beacham, T. D., J. R. Candy, K. D. Le, and M. Wetklo. 2009a. Population structure of chum salmon (*Oncorhynchus keta*) across the Pacific Rim, determined from microsatellite analysis. Fish. Bull., U.S. 107:244-260.
- Beacham, T. D., J. R. Candy, C. Wallace, S. Urawa, S. Sato, N. V. Varnavskaya, K. D. Le, and M. Wetklo. 2009b. Microsatellite stock identification of chum salmon on a Pacific Rim basis. N. Am. J. Fish. Manage. 29:1757-1776.
- Campbell, N. R., S. A. Harmon, and S. R. Narum. 2015. Genotyping-in-Thousands by Sequencing (GT-Seq): A cost effective SNP genotyping method based on custom amplicon sequencing. Mol. Ecol. Res. 15(4):855–867. https://doi.org/10.1111/1755-0998.12357
- Davis, N. D., A. V. Volkov, A. Y. Efimkin, N. A. Kuznetsova, J. L. Armstrong, and O. Sakai. 2009. Review of BASIS salmon food habits studies. N. Pac. Anadr. Fish. Comm. Bull. 5:197-208.
- DeCovich, N., T. H. Dann, S. D. Rogers Olive, H. L. Liller, E. K. C. Fox, J. R. Jasper, E. L. Chenoweth, C. Habicht, and W. D. Templin. 2012. Chum Salmon Baseline for the Western Alaska Salmon Stock Identification Program. Alaska Department of Fish and Game Special Publication 12-26.
- Gelman, A. and D. B. Rubin. 1992. Inference from iterative simulation using multiple sequences. Stat. Sci. 7:457-511.
- Gray, A., T. McCraney, C. Kondzela, C. Marvin, and J. R. Guyon. 2011a. Genetic stock composition analysis of chum salmon bycatch samples from the 2007 Bering Sea trawl fisheries. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-220, 28 p. https://repository.library.noaa.gov/view/noaa/3823
- Gray, A. K., W. T. McCraney, C. T. Marvin, C. M. Kondzela, H. T. Nguyen, and J. R. Guyon. 2011b. Genetic stock composition analysis of chum salmon bycatch samples from the 2008 Bering Sea groundfish fisheries. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-222, 29 p. https://repository.library.noaa.gov/view/noaa/3824

- Gray, A., C. Marvin, C. Kondzela, T. McCraney, and J. R. Guyon. 2010. Genetic stock composition analysis of chum salmon bycatch samples from the 2009 Bering Sea trawl fisheries. Report to the North Pacific Fishery Management Council, 605 W. 4<sup>th</sup> Ave., Anchorage, Alaska, 99510, 23 p.
- Guyon, J. R., C. Kondzela, T. McCraney, C. Marvin, and E. Martinson. 2010. Genetic stock composition analysis of chum salmon bycatch samples from the 2005 Bering Sea groundfish fishery. Report to the North Pacific Fishery Management Council, 605 W. 4<sup>th</sup> Ave., Anchorage, Alaska, 99510, 31 p.
- JTC (Joint Technical Committee of the Yukon River U.S./Canada Panel). 2022. Yukon River salmon 2021 season summary and 2022 season outlook. Alaska Department of Fish; Game, Division of Commercial Fisheries, Regional Information Report No. 3A22-01, Anchorage. https://www.yukonriverpanel.com/publications/yukon-river-joint-technicalcommittee-reports/
- Kondzela, C. M., J. A. Whittle, P. D. Barry, Hv. T. Nguyen, E. M. Yasumiishi, D. W. Nicolls, J. T. Watson, and W. A. Larson. 2021. Genetic stock composition analysis of chum salmon from the prohibited species catch of the 2019 Bering Sea walleye pollock trawl fishery. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-422, 69 p. https://repository.library.noaa.gov/view/noaa/31530
- Kondzela, C. M., J. A. Whittle, S. C. Vulstek, Hv. T. Nguyen, and J. R. Guyon. 2017. Genetic stock composition analysis of chum salmon from the prohibited species catch of the 2015 Bering Sea walleye pollock trawl fishery and Gulf of Alaska groundfish fisheries. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-345, 64 p. https://repository.library.noaa.gov/view/noaa/13521
- Kondzela, C. M., J. A. Whittle, D. Yates, S. C. Vulstek, H. T. Nguyen, and J. R. Guyon. 2016. Genetic stock composition analysis of chum salmon from the prohibited species catch of the 2014 Bering Sea walleye pollock trawl fishery and Gulf of Alaska groundfish fisheries. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-314, 49 p. https://repository.library.noaa.gov/view/noaa/8688
- Kondzela, C. M., C. T. Marvin, S. C. Vulstek, H. T. Nguyen, and J. R. Guyon. 2013. Genetic stock composition analysis of chum salmon bycatch samples from the 2011 Bering Sea walleye pollock trawl fishery. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC243, 39 p. https://repository.library.noaa.gov/view/noaa/4367
- Kondzela, C. M., W. T. McCraney, H. T. Nguyen, and J. R. Guyon. 2012. Genetic stock composition analysis of chum salmon bycatch samples from the 2010 Bering Sea groundfish fisheries. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-233, 29 p. https://repository.library.noaa.gov/view/noaa/4052

- Marvin, C. T, S. L. Wildes, C. M. Kondzela, H. T. Nguyen, and J. R. Guyon. 2011. Genetic stock composition analysis of chum salmon bycatch samples from the 2006 Bering Sea groundfish fisheries. U. S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-220, 29 p. https://repository.library.noaa.gov/view/noaa/3822
- Magoč, T. and S. L. Salzberg. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957-2963. https://doi.org/10.1093/bioinformatics/btr507
- Moran, B. M. and E. C. Anderson. 2019 Bayesian inference from the conditional genetic stock identification model. Can. J. Fish. Aquat. Sci. 76:551-560.
- Munro, A. R., C. Habicht, T. H. Dann, D. M. Eggers, W. D. Templin, M. J. Witteveen, T. T. Baker, K. G. Howard, J. R. Jasper, S. D. Rogers Olive, H. L. Liller, E. L. Chenoweth, and E. C. Volk. 2012. Harvest and harvest rates of chum salmon stocks in fisheries of the Western Alaska Salmon Stock Identification Program (WASSIP), 2007–2009. Alaska Department of Fish and Game Special Publication No. 12-25, Anchorage.
- Myers, K. W., N. V. Klovach, O. F. Gritsenko, S. Urawa, and T. C. Royer. 2007. Stock-specific distributions of Asian and North American salmon in the open ocean, interannual changes, and oceanographic conditions. N. Pac. Anadr. Fish. Comm. Bull. 4:159-177.
- NMFS (National Marine Fisheries Service). 2022a. BSAI non-Chinook salmon mortality estimates, 1991-present, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Alaska Regional Office, Juneau, Alaska. Retrieved on May 26, 2022 from https://www.fisheries.noaa.gov/sites/default/files/akro/chum\_salmon\_mortality2022.html
- NMFS (National Marine Fisheries Service). 2022b. Catch Accounting System data. NMFS Alaska Regional Office. Data compiled by Alaska Fisheries Information Network for Alaska Fisheries Science Center, Juneau. [URL not publicly available as some information is confidential.]
- NMFS (National Marine Fisheries Service). 2009. Bering Sea Chinook salmon bycatch management, Volume I. Final Environmental Impact Statement, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Alaska Regional Office, Juneau, Alaska.
- NPFMC (North Pacific Fishery Management Council). 2020a. Fishery management plan for groundfish of the Bering Sea and Aleutian Islands management area. North Pacific Fishery Management Council, 605 W. 4<sup>th</sup> Ave., Anchorage, Alaska, 99501. https://www.npfmc.org/wp-content/PDFdocuments/fmp/BSAI/BSAIfmp.pdf
- NPFMC (North Pacific Fishery Management Council). 2020b. Fishery management plan for groundfish of the Gulf of Alaska. North Pacific Fishery Management Council, 605 W. 4<sup>th</sup> Ave., Anchorage, Alaska, 99501. https://www.npfmc.org/wp-content/PDFdocuments/fmp/GOA/GOAfmp.pdf

- NPFMC (North Pacific Fishery Management Council). 2012. Bering Sea non-Chinook salmon PSC management measures, initial review draft environmental assessment. North Pacific Fishery Management Council, 605 W. 4<sup>th</sup> Ave., Anchorage, Alaska, 99501.
- NPFMC (North Pacific Fishery Management Council). 2007. Environmental assessment/regulatory impact review/final regulatory flexibility analysis for modifying existing Chinook and chum salmon savings areas: Amendment 84 to the fishery management plan for groundfish of the Bering Sea and Aleutian Islands management area. North Pacific Fishery Management Council, 605 W. 4<sup>th</sup> Ave., Anchorage, Alaska, 99501.
- Pella, J. and H. J. Geiger. 2009. Sampling considerations for estimating geographic origins of Chinook salmon bycatch in the Bering Sea pollock fishery. Alaska Dep. Fish Game Spec. Publ. No. SP 09-08.
- Plummer, M., N. Best, K. Cowles, and K. Vines. 2006 CODA: Convergence Diagnosis and Output Analysis for MCMC. R News 6:7-11.
- Ruggerone, G. T. and J. R. Irvine. 2018. Numbers and biomass of natural- and hatchery-origin pink salmon, chum salmon, and sockeye salmon in the North Pacific Ocean, 1925–2015. Marine and Coastal Fisheries 10(2):152–68. https://doi.org/10.1002/mcf2.10023
- Salo, E. O. 1991. Life history of chum salmon (*Oncorhynchus keta*), p. 231-309. *In*: Groot, C. and L. Margolis (editors), Pacific Salmon Life Histories. UBC Press, Vancouver.
- Urawa, S., S. Sato, P. A. Crane, B. Agler, R. Josephson, and T. Azumaya. 2009. Stock-specific ocean distribution and migration of chum salmon in the Bering Sea and North Pacific Ocean. N. Pac. Anadr. Fish Comm. Bull. 5:131-146.
- Vulstek, S. C., C. M. Kondzela, C. T. Marvin, J. Whittle, and J. R. Guyon. 2014. Genetic stock composition analysis of chum salmon bycatch and excluder device samples from the 2012 Bering Sea walleye pollock trawl fishery. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-271, 35 p. https://repository.library.noaa.gov/view/noaa/4659
- Whittle, J. A., S. C. Vulstek, C. M. Kondzela, and J. R. Guyon. 2015. Genetic stock composition analysis of chum salmon bycatch from the 2013 Bering Sea walleye pollock trawl fishery. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-292, 50 p. https://repository.library.noaa.gov/view/noaa/4852
- Whittle, J. A., C. M. Kondzela, Hv. T. Nguyen, K. Hauch, D. Cuadra, and J. R. Guyon. 2018. Genetic stock composition analysis of chum salmon bycatch from the 2016 Bering Sea walleye pollock trawl fishery and Gulf of Alaska groundfish fisheries. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-366, 58 p. https://repository.library.noaa.gov/view/noaa/17119

- Whittle, J. A., C. M. Kondzela, J. T. Watson, P. D. Barry, Hv. T. Nguyen, E. M. Yasumiishi, D. Nicolls, and W. A. Larson. 2021a. Genetic stock composition analysis of chum salmon from the prohibited species catch of the 2017 Bering Sea walleye pollock trawl fishery and Gulf of Alaska groundfish fisheries. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-419, 73 p. https://repository.library.noaa.gov/view/noaa/30602
- Whittle, J. A., C. M. Kondzela, J. T. Watson, P. D. Barry, Hv. T. Nguyen, E. M. Yasumiishi, D. Nicolls, and W. A. Larson. 2021b. Genetic stock composition analysis of chum salmon from the prohibited species catch of the 2018 Bering Sea walleye pollock trawl fishery and Gulf of Alaska groundfish fisheries. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-420, 81 p. https://repository.library.noaa.gov/view/noaa/30603

## **APPENDIX A – GENETIC MARKERS**

Appendix Table A-1 -- Single nucleotide polymorphisms included in the 84-SNP panel used for stock composition analysis of chum salmon bycatch samples from the 2021 Bering Sea B-season pollock trawl fishery.

| Locus            | Ploidy | SNPpos | Allele1      | Allele2 | Probe1                   | Probe2                  | Primer                            | Primer Conc. (uM) |
|------------------|--------|--------|--------------|---------|--------------------------|-------------------------|-----------------------------------|-------------------|
| Oke ACOT-100     | 2      | 1      | С            | G       | CTTCCGCTCTCTACTCC        | TTCCGCTCTGTACTCC        | TCAGGGACGATAAAGGGATCATCTT         | 0.2000            |
| Oke ATP5L-105    | 2      | 1      | С            | G       | AGTATATTGAGATGAATCCCAC   | ATATTGAGATGAATGCCAC     | GTGCACACCAATCCATTTCTGAAT          | 0.2500            |
| Oke AhR1-78      | 2      | 1      | G            | Α       | CAGCCTCGGTGCCAT          | TCAGCCTCAGTGCCAT        | AGCAGAACCAGCACCTACAG              | 0.2000            |
| Oke CATB-60      | 2      | 1      | С            | Т       | CAGGAACGGGTATGAG         | CAGGAACGAGTATGAG        | GCTTCTATGGGTCCTACTACCGTAT         | 0.2500            |
| Oke_CD81-108     | 2      | 1      | G            | Т       | TCCGGCATGTCCCAG          | TCCGGCATTTCCCAG         | CAGTATCATCATACAGCACAGATACAACA     | 0.2500            |
| Oke_CD81-173     | 2      | 1      | Α            | C       | CAGTCACAGAGAGTCAC        | AGTCACAGCGAGTCAC        | GATGACTGGAGTCAGCTTGCA             | 0.2000            |
| Oke_CKS-389      | 2      | 1      | G            | Α       | AAATGAATGATAATGTGTTCTG   | AAATGAATGATAATATGTTCTG  | GGGCCATTCTCTGAGTTCAGT             | 0.2500            |
| Oke CKS1-94      | 2      | 1      | G            | Т       | TCTGGATAAATTTGTGTATTC    | TTCTGGATAAATTTTTGTATTC  | TCTTCGACATGTTTA ATCGAACAGAAGT     | 0.2500            |
| Oke_DCXR-87      | 2      | 1      | Α            | Т       | CCTGTTTGTTGAAACCGTA      | CCTGTTTGTTGTAACCGTA     | GTCACCCAGAACAATAGAATGAGTCT        | 0.2500            |
| Oke_FANK1-166    | 2      | 1      | С            | Т       | CTACAGCCCGGCTGTG         | CTACAGCCCAGCTGTG        | ACTCACGTGTGGTAGAGACAGA            | 0.2500            |
| Oke_FBXL5-61     | 2      | 1      | G            | Α       | TCTGAGGGAAACTGC          | TCTGAGGAAAACTGC         | TGGTGTGTAACGTCAGTGACTTAAG         | 0.3000            |
| Oke_GHII-3129    | 2      | 1      | G            | Α       | CAGGGCGACTCTAT           | ACAGGGCAACTCTAT         | GTCAAGCTGATACCACTCAAATCTCA        | 0.3000            |
| Oke_GPDH-191     | 2      | 1      | Т            | Α       | CGGAGCCACTTCCAGTA        | CGGAGCCACTACCAGTA       | CCTGTACCTATAGGGCAACTTCAC          | 0.2000            |
| Oke_GPH-105      | 2      | 1      | Т            | G       | CCAGTAATTGGTATTTTGA      | CCAGTAATTGGTCTTTTGA     | CAGATCAACCCTGGAAAAATATCTGATGT     | 0.2500            |
| Oke_HP-182       | 2      | 1      | Α            | C       | AGAAAAGGTGAGCTAGTATG     | AAAAGGTGAGCTCGTATG      | CCGATGACTCCAAAGAAGTTGCT           | 0.2500            |
| Oke_IL8r2-406    | 2      | 1      | Т            | G       | AAACACAAAAACCCC          | AAACACAAAACCCCC         | GGATGGACATTCACAGTCTGGTT           | 0.2000            |
| Oke_KPNA2-87     | 2      | 1      | Т            | Α       | ACAGAACAGAAACAGTG        | AACAGAACAGTAACAGTG      | AGGCAGCCAGGTAAGTCAGTA             | 0.1875            |
| Oke_LAMP2-186    | 2      | 1      | Α            | G       | CTAACTTTACAAAGACACTGC    | AACTTTACAAAGGCACTGC     | TTCTAGCCATGACCCAATGAAAGG          | 0.2500            |
| Oke_MLRN-63      | 2      | 1      | G            | Α       | CTGGTGATTGACGATCC        | CTGGTGATTAACGATCC       | CCATTTCAGCATTGCCAGATTTGAAA        | 0.2500            |
| Oke_Moesin-160   | 2      | 1      | Т            | G       | CATTTTGTAATTCTAATTTTAAGC | ATTTTGTAATTCTAATGTTAAGC | TTTCAGCAAATGAAGAGAACATCAAACTG     | 0.2500            |
| Oke_NUPR1-70     | 2      | 1      | G            | Т       | CTATGAGGACGGGTCACA       | ACTATGAGGACTGGTCACA     | AGACGGTGAACTCTGCTGTAGA            | 0.3000            |
| Oke_PPA2-635     | 2      | 1      | С            | Т       | TTGCCTCCCCCGCTC          | TTATTGCCTCTCCCGCTC      | ACACAACTGACCATATTGACTTTCGA        | 0.2500            |
| Oke_RFC2-618     | 2      | 1      | G            | Α       | CAGCTCCTGGACTCA          | CAGCTCCTAGACTCA         | GACAATGTGTTAGTGTAGGCTTCACT        | 0.2000            |
| Oke_RH1op-245    | 2      | 1      | C            | Т       | AGTGGTGAAGCCTC           | TAGTGGTAAAGCCTC         | TGGCCGATCTCTTCATGGTAATC           | 0.2500            |
| Oke_RS27-81      | 2      | 1      | G            | Α       | TGTCCAGGCGTCATGA         | TGTCCAGGCATCATGA        | GCAACAAAGTGGACTATCACATTGAA        | 0.3000            |
| Oke_RSPRY1-106   | 2      | 1      | Α            | Т       | TAGTCTCTTTACATA ATCTC    | TAGTCTCTTTACTTAATCTC    | GTCCTCCCTATTCTTCCACTTACCT         | 0.2500            |
| Oke_TCP1-78      | 2      | 1      | Α            | G       | ATACTGCTCCAGAGACG        | CTGCTCCAGGGACG          | CTCCAGGGCATCAGCAAATG              | 0.2000            |
| Oke_Tf-278       | 2      | 1      | С            | Α       | ATTTTACAGTTGACATTCAA     | TTTTACAGTTGAAATTCAA     | GCCACAATTGTAATTCTAGATCCAGAGT      | 0.2500            |
| Oke_U1008-83     | 2      | 1      | Α            | G       | CCGTTCTCTTCTTGGACAC      | CGTTCTCTTCCTGGACAC      | GTCACCAAACATCCTGCGAATG            | 0.3000            |
| Oke_U1010-251    | 2      | 1      | Α            | G       | ATAGAGGTGAGCATTGACAT     | TAGAGGTGAGCACTGACAT     | CACCTCAATCAATCAAATGTATTTATAAAGCCA | 0.1875            |
| Oke_U1012-241    | 2      | 1      | С            | G       | ATGGAAAAAGAACTGTTTACT    | ATGGAAAAAGAACTCTTTACT   | GCAGAGGTTATACCCATTTTAGATGCA       | 0.2500            |
| Oke_U1015-255    | 2      | 1      | Α            | G       | CAAACACACACAGAGCC        | AACACACGCAGAGCC         | CAGAGTGCAGAGTAATACGCATACA         | 0.2500            |
| Oke_U1016-154    | 2      | 1      | С            | Т       | CCATGTTTGCGGTATGT        | CCATGTTTGCAGTATGT       | GCAGGTTGCTAAGTCATGTTACACA         | 0.3000            |
| Oke_U1017-52     | 2      | 1      | $\mathbf{C}$ | Т       | AGAGAGTTGTCGTTCATC       | AGAGAGTTGTCATTCATC      | TGGCAATGGGATGTCAAGTTATGA          | 0.3000            |
| Oke_U1018-50     | 2      | 1      | С            | Т       | CTGGGCACGTACAGCT         | CTGGGCACATACAGCT        | TCCAGGTTGCTGACAATGTAAAAGT         | 0.3000            |
| Oke_U1022-139    | 2      | 1      | Α            | G       | CTGGAACATGAAGCAAA        | TGGAACATGGAGCAAA        | AACATTAAAACTGTGGTTTTTGACCTCTTG    | 0.2500            |
| Oke_U1023-147    | 2      | 1      | Α            | C       | CATCAGGGAAAGCCTACAAA     | AGGGAAAGCCGACAAA        | TCTTAAAATGGAGAGAGCGATTAATGAAGG    | 0.2500            |
| Oke_U1024-113    | 2      | 1      | Α            | G       | CCAGAAACAACTTAATTAT      | CAGAAACAACTCAATTAT      | CATGCTGGTGAATTATTGGACAATGT        | 0.2500            |
| Oke_U1025-135    | 2      | 1      | G            | Т       | ACTTAGTCTATTTGTAACTTT    | ACTTAGTCTATTTTTAACTTT   | GGCTAGGGTTCTATTTGGACCAT           | 0.2500            |
| Oke_U2007-190    | 2      | 1      | С            | G       | CTAAAAGCTGAGAATAAAT      | AAAGCTGACAATAAAT        | ACAGGCTGTGATGAGTTAACAATGTAAA      | 0.2500            |
| Oke_U2011-107    | 2      | 1      | G            | Т       | TTCTGTGAGAGATTTAG        | TTTCTGTGAGATATTTAG      | CCGTTTCTGTCAGACTCTGGTAAA          | 0.1250            |
| $Oke\_U2015-151$ | 2      | 1      | $\mathbf{C}$ | Т       | AATTGATCACGATCATTC       | ATTGATCACAATCATTC       | GCATTTTATCCTCAAACTTTTCAACTGACA    | 0.2500            |

# Appendix Table A-1 -- Continued.

| Locus            | Ploidy | $\operatorname{SNPpos}$ | Allele1      | Allele2 | Probe1                  | Probe2                  | Primer                          | Primer Conc. (uM) |
|------------------|--------|-------------------------|--------------|---------|-------------------------|-------------------------|---------------------------------|-------------------|
| Oke_U2025-86     | 2      | 1                       | G            | А       | ACTITITITGTCGTTTTTTT    | ACTTTTTTGTCATTTTTT      | AAATCCCCATGGAGAAACACAATGA       | 0.2000            |
| Oke_U2029-79     | 2      | 1                       | С            | Т       | AGGTGTACTGAAGAGAC       | AGGTGTACTAAAGAGAC       | GGTTTGATTTCGTCGCGATTTGA         | 0.2500            |
| Oke_U2032-74     | 2      | 1                       | G            | Α       | CAATAAAGTGCTAGGTGTCC    | CAATAAAGTGCTAAGTGTCC    | GCTATTCCAATGTAAATCCTGTACTGTGT   | 0.2000            |
| Oke_U2034-55     | 2      | 1                       | С            | Т       | ATGTCAAATCACGCTGATG     | ATGTCAAATCACACTGATG     | GGGAAGAAAAGCCTACCATAAACAG       | 0.2500            |
| Oke_U2035-54     | 2      | 1                       | G            | Α       | CACCAATAACGTCCTAATC     | CACCAATAACATCCTAATC     | CGCCAATAACGCTCCAACAAC           | 0.2500            |
| Oke_U2041-84     | 2      | 1                       | G            | Т       | CAGATCCGGTGTATGC        | ACAGATCCTGTGTATGC       | CCAGACCATGTGCTTGTTTGTCATA       | 0.2500            |
| Oke U2043-51     | 2      | 1                       | G            | Α       | TCTGGAGGCGTATTGG        | CTGGAGGCATATTGG         | CACAAACCTACTACAGACAGCAGTT       | 0.2000            |
| Oke_U2048-91     | 2      | 1                       | Α            | С       | CAGCCTCATAAGATGTTTA     | CAGCCTCATAAGCTGTTTA     | AGTTGGGTCTTAAAGATGATCATTTGCT    | 0.2000            |
| $Oke\_U2050-101$ | 2      | 1                       | C            | Т       | AATTGATCTACAGCTGCACG    | AATTGATCTACAACTGCACG    | CTCTGAGTGTCACAATCACATATCGT      | 0.2000            |
| Oke_U2053-60     | 2      | 1                       | С            | Т       | CACACATATGAGATGCC       | CACACATATAAGATGCC       | TCTGCTTTTGTCGTCTCACCAA          | 0.1875            |
| Oke_U2054-58     | 2      | 1                       | C            | Т       | ATGCCCAATTACGTCAGCA     | TGCCCAATTACATCAGCA      | CGTCTCATTCAGCTCTTTGATGTC        | 0.2000            |
| Oke_U2056-90     | 2      | 1                       | G            | Т       | CGAAGTGATGAAGGTGACAA    | CGAAGTGATGAATGTGACAA    | CCATCACGTCACCATTACACTGT         | 0.1875            |
| Oke_U2057-80     | 2      | 1                       | А            | G       | CACGTTTTCTCTTTTCTC      | ACGTTTTCTCCTTTCTC       | GCAGTTGTCATGGCAGTAAGG           | 0.2500            |
| Oke_U212-87      | 2      | 1                       | C            | Α       | CTTGTGACATTCCTCTCT      | CTTGTGACATTACTCTCT      | TTGATTCATACTCAAGGTGAGCAGATT     | 0.2500            |
| Oke U302-195     | 2      | 1                       | С            | Α       | TTGTCAAAGGAATCATTT      | TGTCAAAGGAATAATTT       | GACCCTCAGCTATTTTAAGAACCTCAA     | 0.2500            |
| Oke_U504-228     | 2      | 1                       | А            | G       | TGGCTCAAACTTG           | TTGGCTCGAACTTG          | CTTAACTCAGTCACACCAACTCACT       | 0.2500            |
| Oke U506-110     | 2      | 1                       | С            | Т       | TTGTAAGTTGTGGCTAAAA     | TTGTAAGTTGTGACTAAAA     | CGTGGTTGGTTTCATTGACTCTCA        | 0.2000            |
| Oke U507-286     | 2      | 1                       | Т            | G       | CTGCTGTTCATAAAAGTA      | CTGCTGTTCATACAAGTA      | TGGTCATAGCTTGCACTGTACAAA        | 0.3000            |
| Oke U509-219     | 2      | 1                       | C            | Т       | CCTCTCTGCAGGGCT         | CCCTCTCTACAGGGCT        | GCACCCCACCTGGCTT                | 0.1250            |
| Oke arf-319      | 2      | 1                       | Т            | С       | CTGTGTGAATTGCCTC        | CTGTGTGAACTGCCTC        | TGCAGAAACTGATCATTGGTAGTGG       | 0.1875            |
| Oke_azin1-90     | 2      | 1                       | C            | Т       | CCTTTATCTGAGGAACTG      | CCTTTATCTGAAGAACTG      | GGGAATAGTGTCATTTGGGATGCAT       | 0.2500            |
| Oke brd2-118     | 2      | 1                       | С            | Т       | ATGACGAAGCTCTCC         | ATGACGAAACTCTCC         | CTCAAGCCCTCCACACTCA             | 0.2000            |
| Oke brp16-65     | 2      | 1                       | С            | Т       | ACGTTGCCTGTCCAC         | ACGTTGCCTATCCAC         | TCCACGTCACTCAGCATGATG           | 0.2500            |
| Oke_ccd16-77     | 2      | 1                       | Α            | С       | CCAGCCCCCTCTGAAA        | AGCCCCCGCTGAAA          | TGTCTTCAGAATCCAATGCTTTCCT       | 0.1875            |
| Oke e2ig5-50     | 2      | 1                       | С            | Т       | CATCTTTGTATCTGTGCCATT   | TCATCTTTGTATCTATGCCATT  | GCACTGCTCATTCTGTCACATG          | 0.2500            |
| Oke eif4g1-43    | 2      | 1                       | G            | Т       | CTGAGATTCTTCATCTTTTAC   | TGAGATTCTTCATATTTTAC    | GCACCCAACAGTTCATCATGTAAGT       | 0.2500            |
| Oke_f5-71        | 2      | 1                       | C            | Т       | CAGGTGCGTGCAGTAA        | TCAGGTGCATGCAGTAA       | CTCAAATTTCCCTTTGACATCAATTCATCA  | 0.2500            |
| Oke_gdh1-62      | 2      | 1                       | C            | Т       | TTCTGTGTCCCGTGACCT      | CTGTGTCCCATGACCT        | CCACGTGATACAGGGAGATGTG          | 0.2000            |
| Oke_glrx1-78     | 2      | 1                       | С            | Т       | TGGGCATTTAGAGTTTATT     | TGGGCATTTAGAATTTATT     | CGCTCCGTCCAGTGATGTC             | 0.2500            |
| Oke_il-1racp-67  | 2      | 1                       | G            | А       | CGTACGAGATGTAGATGT      | CGTACGAGATATAGATGT      | AATTGCTCCTCCTCGCTATTTCTC        | 0.2000            |
| Oke_mgll-49      | 2      | 1                       | А            | Т       | ATTTATGGGTGTTCCCC       | TTATGGGAGTTCCCC         | ACATTGTAATCTGTATTAGTCCAATGCAGAC | 0.2500            |
| Oke_nc2b-148     | 2      | 1                       | А            | С       | TTTAGTTCTAGTCAAAAGTAG   | TAGTTCTAGTCCAAAGTAG     | CCAGCCTATTTCCTTTAGTGCATATGA     | 0.2500            |
| Oke_pgap-111     | 2      | 1                       | С            | Т       | AGCTAGCAGGCTAAAG        | AGCTAGCAAGCTAAAG        | TGCAGATCTCAATTTGAACGACCTAT      | 0.2000            |
| Oke_psmd9-57     | 2      | 1                       | C            | Т       | CATTGGCGGTGTAACG        | TCATTGGCAGTGTAACG       | ACTGTAGTGACTGCATTTCATATTGCT     | 0.2000            |
| Oke_rab5a-117    | 2      | 1                       | $\mathbf{C}$ | Т       | CAGCTGTTTTTTTTTTGTAGCCT | AGCTGTTTTTTTTTTTATAGCCT | GGGAATAACAGTCATTGCAGCATTT       | 0.2000            |
| Oke ras1-249     | 2      | 1                       | Т            | G       | CACCAAGGTAAAAAT         | CCAAGGGAAAAAT           | GGATGACTAAGAGCGACTGTATGTG       | 0.2500            |
| Oke serpin-140   | 2      | 1                       | Α            | Т       | CAAGAACTGACCTTAGACAC    | AAGAACTGACCTTTGACAC     | TCCACAGTGAGTAATAAAGTTGCACAT     | 0.2000            |
| Oke_slc1a3a-86   | 2      | 1                       | С            | Т       | CCCAACGCGGTGATG         | CCCAACGCAGTGATG         | TGTCTTCATCTGTGGACTCCTACA        | 0.3000            |
| Oke_sylc-90      | 2      | 1                       | Α            | Т       | ATATCTTTGAGACTAGATTAA   | CTTTGAGACAAGATTAA       | TTGAGGAAACCACTGGTCTTACAAG       | 0.1875            |
| Oke_thic-84      | 2      | 1                       | С            | Т       | ATGGAATGACAGCAATGT      | ATGGAATGACAACAATGT      | GCTGCTGTCTTAAACCACATTCTACA      | 0.2500            |
| Oke_u200-385     | 2      | 1                       | G            | Т       | CATTATCTCCCTGAATGTA     | CATTATCTCCATGAATGTA     | CCCATAATTTTGCAACCCTAGTCACA      | 0.2000            |
| $Oke\_u217-172$  | 2      | 1                       | Т            | С       | CACTCTTACAAAAACA        | CACTCTTACGAAAACA        | GGATGGAAGAAGTTAGTTGTGTCAGA      | 0.3000            |

# **APPENDIX B – GENETIC BASELINE**

Appendix Table B-1 -- Chum salmon populations in the Alaska Department of Fish and Game single nucleotide polymorphism baseline grouped by six regional reporting groups used in the analyses of this report.

| Population              | Reporting Group | Samples | Population                        | Reporting Group | Samples |
|-------------------------|-----------------|---------|-----------------------------------|-----------------|---------|
| Abashiri River          | SE Asia         | 80      | Pymta                             | NE Asia         | 147     |
| Chitose River - early   | SE Asia         | 80      | Tauy                              | NE Asia         | 41      |
| Gakko River - early     | SE Asia         | 78      | Tym River                         | NE Asia         | 53      |
| Kushiro River           | SE Asia         | 79      | Udarnitza River                   | NE Asia         | 44      |
| Namdae River            | SE Asia         | 90      | Vorovskaya                        | NE Asia         | 101     |
| Nishibetsu River        | SE Asia         | 79      | Agiapuk River                     | W Alaska        | 94      |
| Sasanai River           | SE Asia         | 77      | Alagnak River                     | W Alaska        | 92      |
| Shari River             | SE Asia         | 75      | American River                    | W Alaska        | 86      |
| Shinzunai River         | SE Asia         | 78      | West Fork Andreafsky River        | W Alaska        | 85      |
| Teshio River            | SE Asia         | 80      | Andreafsky River - East Fork weir | W Alaska        | 94      |
| Tokachi River           | SE Asia         | 78      | Aniak River                       | W Alaska        | 92      |
| Tokoro River            | SE Asia         | 69      | Yellow River - Anvik              | W Alaska        | 80      |
| Tokushibetsu River      | SE Asia         | 80      | Otter Creek - Anvik               | W Alaska        | 156     |
| Yurappu River - early   | SE Asia         | 80      | Big River                         | W Alaska        | 94      |
| Yurappu River - late    | SE Asia         | 75      | Black River                       | W Alaska        | 93      |
| Amur River - summer run | NE Asia         | 60      | Big Creek - Naknek River          | W Alaska        | 69      |
| Bistraya River          | NE Asia         | 66      | Chulinak                          | W Alaska        | 92      |
| Bolshaya River          | NE Asia         | 93      | Clear Creek                       | W Alaska        | 94      |
| Hairusova River         | NE Asia         | 85      | Eldorado River                    | W Alaska        | 89      |
| Kamchatka River         | NE Asia         | 49      | Fish River                        | W Alaska        | 92      |
| Kanchalan               | NE Asia         | 77      | George River                      | W Alaska        | 95      |
| Kol River               | NE Asia         | 123     | Gisasa River                      | W Alaska        | 95      |
| Magadan                 | NE Asia         | 77      | Goodnews River                    | W Alaska        | 137     |
| Naiba                   | NE Asia         | 98      | Henshaw Creek - early             | W Alaska        | 94      |
| Oklan River             | NE Asia         | 75      | Holokuk River                     | W Alaska        | 103     |
| Ola River - Hatchery    | NE Asia         | 78      | Huslia River, Koyukuk - Set B     | W Alaska        | 95      |
| Ossora                  | NE Asia         | 87      | Inmachuk River                    | W Alaska        | 91      |
| Ozerki Hatchery         | NE Asia         | 93      | Iowithla River                    | W Alaska        | 95      |
| Palana River            | NE Asia         | 90      | Kaltag River                      | W Alaska        | 92      |
| Paratunka River         | NE Asia         | 94      | Kanektok River weir               | W Alaska        | 94      |
| Penzhina                | NE Asia         | 43      | Kasigluk River                    | W Alaska        | 55      |

| Appendix Table B-1 Continue | d. |
|-----------------------------|----|
|-----------------------------|----|

| Population                             | Reporting Group | Samples | Population                                            | Reporting Group | Samples |
|----------------------------------------|-----------------|---------|-------------------------------------------------------|-----------------|---------|
| Kelly Lake - Noatak River              | W Alaska        | 95      | Stony River                                           | W Alaska        | 150     |
| Kobuk River - at Kiana                 | W Alaska        | 95      | Stuyahok River                                        | W Alaska        | 86      |
| Kisaralik River - (Set F)              | W Alaska        | 93      | Sunshine Creek                                        | W Alaska        | 47      |
| Klutuspak Creek                        | W Alaska        | 70      | Takotna River - 2 mile above Takotna Village          | W Alaska        | 94      |
| Kobuk - Salmon River (Mile 4)          | W Alaska        | 99      | Tatlawiksuk River weir                                | W Alaska        | 95      |
| Kogrukluk River weir                   | W Alaska        | 95      | Togiak River                                          | W Alaska        | 175     |
| Kokwok River                           | W Alaska        | 131     | Tozitna River                                         | W Alaska        | 92      |
| Koyuk River                            | W Alaska        | 43      | Tubutulik River                                       | W Alaska        | 93      |
| Kwethluk River                         | W Alaska        | 143     | Tuluksak River Weir                                   | W Alaska        | 92      |
| Kwiniuk River                          | W Alaska        | 94      | Unalakleet                                            | W Alaska        | 188     |
| Mekoryuk River                         | W Alaska        | 104     | Ungalik River                                         | W Alaska        | 144     |
| Melozitna River                        | W Alaska        | 91      | Wandering Creek - tributary of Dog Salmon River       | W Alaska        | 50      |
| Mulchatna River - Upper Nushagak River | W Alaska        | 91      | Whale Mountain Creek, (King Salmon River, Egegik Bay) | W Alaska        | 189     |
| Necons River                           | W Alaska        | 95      | Windy Fork Kuskokwim                                  | W Alaska        | 93      |
| Niukluk River                          | W Alaska        | 93      | Innoko River (Yukon A)                                | W Alaska        | 85      |
| Noatak River - above hatchery          | W Alaska        | 92      | American River                                        | SW Alaska       | 95      |
| Nome River                             | W Alaska        | 94      | Foster Creek - Balboa Bay                             | SW Alaska       | 182     |
| Nulato River                           | W Alaska        | 189     | Dog Bay                                               | SW Alaska       | 95      |
| Nunsatuk River - (Set A)               | W Alaska        | 92      | Kizhuyak River                                        | SW Alaska       | 174     |
| Upper Nushagak                         | W Alaska        | 97      | Peterson Lagoon                                       | SW Alaska       | 181     |
| Osviak River                           | W Alaska        | 88      | Uganik River                                          | SW Alaska       | 175     |
| Pikmiktalik River                      | W Alaska        | 95      | Alligator Hole                                        | SW Alaska       | 183     |
| Pilgrim River                          | W Alaska        | 75      | Main Creek - Amber Bay                                | SW Alaska       | 85      |
| Pumice Creek                           | W Alaska        | 95      | Barling Bay Creek                                     | SW Alaska       | 92      |
| Salmon River                           | W Alaska        | 95      | Belkovski River                                       | SW Alaska       | 87      |
| Selby Slough                           | W Alaska        | 90      | Big River (Hallo Bay)                                 | SW Alaska       | 95      |
| South Fork Koyukuk River - Early       | W Alaska        | 90      | Big Sukhoi                                            | SW Alaska       | 189     |
| South Fork Kuskokwim - fall            | W Alaska        | 95      | Canoe Bay                                             | SW Alaska       | 186     |
| Shaktoolik River                       | W Alaska        | 94      | Chichagof Bay                                         | SW Alaska       | 180     |
| Snake River                            | W Alaska        | 90      | Chiginagak Bay River                                  | SW Alaska       | 159     |
| Solomon River                          | W Alaska        | 62      | Coal Valley                                           | SW Alaska       | 94      |

| Population                       | Reporting Group | Samples | Population                            | Reporting Group | Samples |
|----------------------------------|-----------------|---------|---------------------------------------|-----------------|---------|
| Coleman Creek                    | SW Alaska       | 95      | Russell Creek                         | SW Alaska       | 185     |
| Coxcomb Creek                    | SW Alaska       | 89      | Russian River                         | SW Alaska       | 185     |
| Deadman River                    | SW Alaska       | 95      | Sandy Cove                            | SW Alaska       | 186     |
| Deer Valley                      | SW Alaska       | 91      | Sitkinak Island                       | SW Alaska       | 93      |
| Delta Creek (Cold Bay )          | SW Alaska       | 95      | Spiridon River - Upper                | SW Alaska       | 89      |
| Dry Bay River                    | SW Alaska       | 71      | St. Catherine Cove                    | SW Alaska       | 171     |
| Eagle Harbor                     | SW Alaska       | 94      | Big River - Stepovak Bay              | SW Alaska       | 143     |
| Frosty Creek                     | SW Alaska       | 190     | Stepovak River                        | SW Alaska       | 94      |
| Gull Cape Creek                  | SW Alaska       | 186     | Sturgeon River                        | SW Alaska       | 109     |
| Three Hills River                | SW Alaska       | 49      | Traders Cove                          | SW Alaska       | 76      |
| Ivanof River                     | SW Alaska       | 181     | Volcano Bay (Cold Bay)                | SW Alaska       | 95      |
| Joshua Green                     | SW Alaska       | 92      | Bear Bay Creek                        | SW Alaska       | 187     |
| Karluk Lagoon                    | SW Alaska       | 83      | North Fork Creek, Aniakchak River     | SW Alaska       | 94      |
| Kialagvik Creek (Wide Bay)       | SW Alaska       | 177     | Alagogshak River                      | SW Alaska       | 94      |
| Kitoi Hatchery                   | SW Alaska       | 194     | Portage Creek                         | SW Alaska       | 190     |
| Lawrence Valley Creek            | SW Alaska       | 190     | North Fork Creek, Kujulik Bay         | SW Alaska       | 164     |
| Little John Lagoon               | SW Alaska       | 172     | Wiggly Creek - Cinder                 | SW Alaska       | 177     |
| Meshik River                     | SW Alaska       | 78      | West Kiliuda Creek                    | SW Alaska       | 87      |
| Braided Creek (Meshik River)     | SW Alaska       | 94      | Zachary Bay                           | SW Alaska       | 76      |
| Moffet Creek                     | SW Alaska       | 95      | Zachar River                          | SW Alaska       | 66      |
| Nakililock River                 | SW Alaska       | 95      | 17 Mile Slough (Nenana) - fall run    | Up/Mid Yukon    | 90      |
| North of Cape Seniavin           | SW Alaska       | 96      | Big Creek - Canadian Mainstem (Yukon) | Up/Mid Yukon    | 100     |
| Northeast Creek                  | SW Alaska       | 94      | Black River                           | Up/Mid Yukon    | 95      |
| Sapsuk River, Nelson Lagoon      | SW Alaska       | 144     | Bluff Cabin                           | Up/Mid Yukon    | 99      |
| Ocean Bay                        | SW Alaska       | 78      | Big Salt River                        | Up/Mid Yukon    | 69      |
| Pass Creek - Wide Bay            | SW Alaska       | 94      | Chandalar River                       | Up/Mid Yukon    | 92      |
| Plenty Bear Creek (Meshik River) | SW Alaska       | 138     | Chena River                           | Up/Mid Yukon    | 77      |
| NE Portage - Alitak              | SW Alaska       | 94      | Delta River - Fairbanks               | Up/Mid Yukon    | 149     |
| Right Hand Moller Bay            | SW Alaska       | 94      | Donjek River                          | Up/Mid Yukon    | 60      |
| Rough Creek                      | SW Alaska       | 77      | Fishing Branch                        | Up/Mid Yukon    | 90      |
| Ruby's Lagoon ( Cold Bay )       | SW Alaska       | 92      | Henshaw Creek - late                  | Up/Mid Yukon    | 60      |

# Appendix Table B-1 -- Continued.

| Appendix Table B- | <ol> <li>1 Continued.</li> </ol> |
|-------------------|----------------------------------|
|-------------------|----------------------------------|

| Population                                    | Reporting Group | Samples | Population                     | Reporting Group | Samples |
|-----------------------------------------------|-----------------|---------|--------------------------------|-----------------|---------|
| Henshaw Creek - late                          | Up/Mid Yukon    | 60      | Dosewallips River - summer run | EGOA/PNW        | 86      |
| Jim River                                     | Up/Mid Yukon    | 146     | Dry Bay Creek                  | EGOA/PNW        | 94      |
| Kantishna River                               | Up/Mid Yukon    | 94      | Ecstall                        | EGOA/PNW        | 50      |
| Kluane River                                  | Up/Mid Yukon    | 114     | Elwha River                    | EGOA/PNW        | 93      |
| Minto Slough                                  | Up/Mid Yukon    | 91      | Fish Creek - early             | EGOA/PNW        | 131     |
| Old Crow - Porcupine River                    | Up/Mid Yukon    | 92      | DIPAC Hatchery                 | EGOA/PNW        | 281     |
| Pelly River                                   | Up/Mid Yukon    | 84      | Fish Creek - late              | EGOA/PNW        | 49      |
| Salcha River                                  | Up/Mid Yukon    | 83      | Ford Arm Lake - fall           | EGOA/PNW        | 95      |
| South Fork Koyukuk River - Late               | Up/Mid Yukon    | 92      | Goldstream River               | EGOA/PNW        | 95      |
| Sheenjek River                                | Up/Mid Yukon    | 93      | Grays River - fall run         | EGOA/PNW        | 93      |
| Tanana River Mainstem                         | Up/Mid Yukon    | 95      | Hamma Hamma River - summer     | EGOA/PNW        | 108     |
| Tatchun Creek                                 | Up/Mid Yukon    | 92      | Hamma Hamma River              | EGOA/PNW        | 94      |
| Teslin River                                  | Up/Mid Yukon    | 92      | Harding River                  | EGOA/PNW        | 45      |
| Toklat River - Geiger Ck. (Set A) -Mainstream | Up/Mid Yukon    | 95      | Herman Creek - Chilkat River   | EGOA/PNW        | 94      |
| Keta Creek                                    | EGOA/PNW        | 95      | Hidden Falls Hatchery          | EGOA/PNW        | 95      |
| Admiralty Creek                               | EGOA/PNW        | 64      | Hidden Inlet                   | EGOA/PNW        | 82      |
| Aloutte River                                 | EGOA/PNW        | 95      | I-205 Seeps - fall run         | EGOA/PNW        | 72      |
| Bag Harbor                                    | EGOA/PNW        | 49      | Inch Creek                     | EGOA/PNW        | 181     |
| Beartrap Creek                                | EGOA/PNW        | 582     | Jimmy Creek - summer run       | EGOA/PNW        | 92      |
| Big Qualicum River                            | EGOA/PNW        | 72      | Johns Creek - summer run       | EGOA/PNW        | 92      |
| Big Mission Creek Fall Run                    | EGOA/PNW        | 55      | Kalama Creek - winter run      | EGOA/PNW        | 54      |
| Carmen Lake                                   | EGOA/PNW        | 67      | Karta River                    | EGOA/PNW        | 56      |
| Carroll River                                 | EGOA/PNW        | 85      | Kitasoo Creek                  | EGOA/PNW        | 169     |
| Chilkat - mainstem                            | EGOA/PNW        | 76      | Kitimat River                  | EGOA/PNW        | 104     |
| Chunilna River                                | EGOA/PNW        | 83      | Kitwanga River                 | EGOA/PNW        | 74      |
| Constantine Creek                             | EGOA/PNW        | 594     | Klahini River                  | EGOA/PNW        | 50      |
| Conuma River                                  | EGOA/PNW        | 96      | Klehini River - Chilkat River  | EGOA/PNW        | 92      |
| Dewatto River - fall chum                     | EGOA/PNW        | 74      | Lagoon Creek - fall run        | EGOA/PNW        | 166     |
| Diru Creek - Tribal Hatchery                  | EGOA/PNW        | 45      | Little Creek - fall run        | EGOA/PNW        | 92      |
| Disappearance Creek - fall run                | EGOA/PNW        | 162     | Lilliwaup River - summer run   | EGOA/PNW        | 45      |
| Disappearance Creek                           | EGOA/PNW        | 143     | Lilliwaup River - fall run     | EGOA/PNW        | 92      |

| Population                    | Reporting Group | Samples | Population                  | Reporting Group | Samples |
|-------------------------------|-----------------|---------|-----------------------------|-----------------|---------|
| Long Bay                      | EGOA/PNW        | 159     | Sarita River                | EGOA/PNW        | 63      |
| Little Qualicum River         | EGOA/PNW        | 98      | Satsop River                | EGOA/PNW        | 95      |
| Lower Skagit River - fall run | EGOA/PNW        | 91      | Sawmill Creek - Berners Bay | EGOA/PNW        | 95      |
| Little Susitna River weir     | EGOA/PNW        | 95      | Sedgewick                   | EGOA/PNW        | 50      |
| McNeil River Lagoon           | EGOA/PNW        | 108     | Sherwood Creek - fall run   | EGOA/PNW        | 87      |
| Medvejie Hatchery             | EGOA/PNW        | 119     | Sherwood Creek - summer run | EGOA/PNW        | 88      |
| Mill Creek - fall run         | EGOA/PNW        | 80      | Sisters Lake                | EGOA/PNW        | 86      |
| Nahmint River                 | EGOA/PNW        | 95      | Siwash Creek                | EGOA/PNW        | 362     |
| Nakat Inlet - summer          | EGOA/PNW        | 95      | Skamokawa Creek - fall run  | EGOA/PNW        | 76      |
| Nakwasina River               | EGOA/PNW        | 93      | Skykomish River - fall run  | EGOA/PNW        | 87      |
| North Arm Creek               | EGOA/PNW        | 97      | Snootli Creek               | EGOA/PNW        | 190     |
| North Creek - fall run        | EGOA/PNW        | 93      | Snoqualmie River            | EGOA/PNW        | 84      |
| Neets Bay - fall              | EGOA/PNW        | 95      | Sooke River                 | EGOA/PNW        | 50      |
| Neets Bay - Summer            | EGOA/PNW        | 145     | Spink Creek                 | EGOA/PNW        | 44      |
| Nimpkish River                | EGOA/PNW        | 187     | Stagoo                      | EGOA/PNW        | 49      |
| Nisqually River Hatchery      | EGOA/PNW        | 94      | Sugsaw River                | EGOA/PNW        | 60      |
| Nitinat River                 | EGOA/PNW        | 113     | Surprise                    | EGOA/PNW        | 50      |
| Norrish Creek                 | EGOA/PNW        | 91      | Susitna River (Slough 11)   | EGOA/PNW        | 94      |
| Pallant Creek                 | EGOA/PNW        | 209     | Swan Cove Creek             | EGOA/PNW        | 88      |
| Prospect Creek                | EGOA/PNW        | 89      | Taku River - fall           | EGOA/PNW        | 93      |
| Puntledge River               | EGOA/PNW        | 99      | Talkeetna River             | EGOA/PNW        | 50      |
| Olsen Creek (PWS) - Set A     | EGOA/PNW        | 94      | Traitors Cove Creek         | EGOA/PNW        | 91      |
| Quilcene - summer run         | EGOA/PNW        | 63      | Union River - summer        | EGOA/PNW        | 109     |
| Ralph's Creek                 | EGOA/PNW        | 95      | Upper Sauk River - fall run | EGOA/PNW        | 86      |
| Saginaw Creek                 | EGOA/PNW        | 41      | West Arm Creek              | EGOA/PNW        | 186     |
| Salmon Creek - summer run     | EGOA/PNW        | 82      | West Crawfish               | EGOA/PNW        | 92      |
| Salmon River                  | EGOA/PNW        | 47      | Weaver Creek                | EGOA/PNW        | 96      |
| Saltery Bay                   | EGOA/PNW        | 48      | Wells River                 | EGOA/PNW        | 597     |
| Sample Creek                  | EGOA/PNW        | 74      | Wells Bridge                | EGOA/PNW        | 46      |
| Sanborn Creek                 | EGOA/PNW        | 94      | Wally Noerenberg Hatchery   | EGOA/PNW        | 385     |
| Saook Bay                     | EGOA/PNW        | 94      | Willow Creek                | EGOA/PNW        | 89      |

# Appendix Table B-1 -- Continued.

#### APPENDIX C – SPATIAL CLUSTERS OF ADF&G STATISTICAL AREAS

- Appendix Table C-1 -- Four spatial clusters of ADF&G groundfish statistical areas<sup>1</sup> of chum salmon prohibited species catch sampled from 2013 to 2021 during the B-season of the Bering Sea pollock trawl fishery and analyzed for genetic stock composition.
- Cluster 1: 625504, 625531, 625600, 625630, 625700, 625730, 635501, 635504, 635530, 635600, 635630, 635700, 635730, 645434, 645501, 645502, 645530, 645600, 645630, 645700, 645730, 655407, 655409, 655410, 655430, 655500, 655530, 655600, 655630, 655700, 655730, 665335, 665336, 665401, 665403, 665404, 665430, 665500, 665530, 665600, 665630, 665700, 665730
- Cluster 2: 675430, 675500, 675530, 675600, 675630, 675700, 675730, 685500, 685530, 685600, 685630, 685700, 685730
- Cluster 3: 695530, 695600, 695631, 695632, 705530, 705600, 705630, 705701, 705730, 715600, 715630, 715700, 715730, 725630, 725700, 725730, 735630, 735700, 735730, 745730
- Cluster 4: 705800, 705830, 715800, 715830, 725800, 725830, 725900, 735800, 735830, 735900, 735930, 745800, 745830, 745900, 745930, 746000, 755800, 755830, 755900, 755930, 756000, 765830, 765900, 765930, 766000, 766030, 775830, 775900, 775930, 776000, 776030, 785900, 785930, 786000, 786030

<sup>&</sup>lt;sup>1</sup> http://www.adfg.alaska.gov/index.cfm?adfg=fishingCommercialByFishery.statmaps

# **APPENDIX D – GSI ESTIMATES**

Regional stock composition estimates of chum salmon samples from the 2021 Bering Sea Bseason pollock trawl fishery and test excluder device hauls. Note that total PSC was tabulated from the AKFIN database with observer records and slightly exceeds the NMFS Alaska Regional Office mortality estimate.

| Region            | Est. num.   | Est. CI         | Mean  | 2.5%  | Median | 97.5% | P=0  | SF   |
|-------------------|-------------|-----------------|-------|-------|--------|-------|------|------|
| SE Asia           | 9,100       | 7,148-11,207    | 0.200 | 0.157 | 0.199  | 0.246 | 0.00 | 1.00 |
| NE Asia           | 23,319      | 20,736-25,920   | 0.512 | 0.456 | 0.512  | 0.570 | 0.00 | 1.00 |
| W Alaska          | 2,970       | 1,724-4,467     | 0.065 | 0.038 | 0.064  | 0.098 | 0.00 | 1.00 |
| Up/Mid Yukon      | 1,172       | 477-2,135       | 0.026 | 0.010 | 0.025  | 0.047 | 0.00 | 1.00 |
| SW Alaska         | 533         | 0-1,462         | 0.012 | 0.000 | 0.010  | 0.032 | 0.05 | 1.00 |
| E GOA/PNW         | 8,411       | 6,570-10,423    | 0.185 | 0.144 | 0.184  | 0.229 | 0.00 | 1.00 |
| East of 170° (PSC | C = 502,053 | ; n = 3,203)    |       |       |        |       |      |      |
| Region            | Est. num.   | Est. CI         | Mean  | 2.5%  | Median | 97.5% | P=0  | SF   |
| SE Asia           | 55,715      | 50,029-61,612   | 0.111 | 0.100 | 0.111  | 0.123 | 0.00 | 1.00 |
| NE Asia           | 280,909     | 271,685-290,006 | 0.560 | 0.541 | 0.560  | 0.578 | 0.00 | 1.00 |
| W Alaska          | 46,590      | 41,222-52,221   | 0.093 | 0.082 | 0.093  | 0.104 | 0.00 | 1.00 |
| Up/Mid Yukon      | 1,548       | 259-3,314       | 0.003 | 0.001 | 0.003  | 0.007 | 0.01 | 1.00 |
| SW Alaska         | 12,283      | 8,392-16,455    | 0.024 | 0.017 | 0.024  | 0.033 | 0.00 | 1.00 |
| E GOA/PNW         | 105,006     | 97,683-112,495  | 0.209 | 0.195 | 0.209  | 0.224 | 0.00 | 1.00 |

West of  $170^{\circ}$  (PSC = 45,508; n = 331)

Early (PSC = 128,904; n = 725)

| Region             | Est. num.   | Est. CI         | Mean  | 2.5%  | Median | 97.5% | P=0  | SF   |
|--------------------|-------------|-----------------|-------|-------|--------|-------|------|------|
| SE Asia            | 19,192      | 15,804-22,801   | 0.149 | 0.123 | 0.149  | 0.177 | 0.00 | 1.00 |
| NE Asia            | 64,560      | 59,490-69,605   | 0.501 | 0.462 | 0.501  | 0.540 | 0.00 | 1.00 |
| W Alaska           | 9,620       | 6,889-12,642    | 0.075 | 0.053 | 0.074  | 0.098 | 0.00 | 1.00 |
| Up/Mid Yukon       | 1,971       | 707-3,844       | 0.015 | 0.005 | 0.014  | 0.030 | 0.00 | 1.00 |
| SW Alaska          | 6,537       | 4,068-9,376     | 0.051 | 0.032 | 0.050  | 0.073 | 0.00 | 1.00 |
| E GOA/PNW          | 27,021      | 23,101-31,139   | 0.210 | 0.179 | 0.209  | 0.242 | 0.00 | 1.00 |
| Middle (PSC = $38$ | 84,865; n = | 2,563)          |       |       |        |       |      |      |
| Region             | Est. num.   | Est. CI         | Mean  | 2.5%  | Median | 97.5% | P=0  | SF   |
| SE Asia            | 41,605      | 36,839-46,654   | 0.108 | 0.096 | 0.108  | 0.121 | 0.00 | 1.00 |
| NE Asia            | 224,571     | 216,738-232,407 | 0.584 | 0.563 | 0.584  | 0.604 | 0.00 | 1.00 |
| W Alaska           | 34,917      | 30,425-39,703   | 0.091 | 0.079 | 0.091  | 0.103 | 0.00 | 1.00 |
| Up/Mid Yukon       | 1,496       | 454-2,983       | 0.004 | 0.001 | 0.004  | 0.008 | 0.00 | 1.00 |
| SW Alaska          | 7,722       | 4,733-11,055    | 0.020 | 0.012 | 0.020  | 0.029 | 0.00 | 1.01 |
| E GOA/PNW          | 74,552      | 68,435-80,916   | 0.194 | 0.178 | 0.194  | 0.210 | 0.00 | 1.00 |

Late (PSC = 33,792; n = 246)

| Region                                        | Est. num.    | Est. CI         | Mean  | 2.5%  | Median | 97.5% | P=0  | SF   |
|-----------------------------------------------|--------------|-----------------|-------|-------|--------|-------|------|------|
| SE Asia                                       | 5,117        | 3,605-6,796     | 0.151 | 0.107 | 0.151  | 0.201 | 0.00 | 1.00 |
| NE Asia                                       | 14,753       | 12,510-17,028   | 0.437 | 0.370 | 0.436  | 0.504 | 0.00 | 1.00 |
| W Alaska                                      | 2,676        | 1,394-4,185     | 0.079 | 0.041 | 0.078  | 0.124 | 0.00 | 1.00 |
| Up/Mid Yukon                                  | 1,083        | 413-2,096       | 0.032 | 0.012 | 0.030  | 0.062 | 0.00 | 1.00 |
| SW Alaska                                     | 166          | 0-786           | 0.005 | 0.000 | 0.003  | 0.023 | 0.28 | 1.00 |
| E GOA/PNW                                     | 9,995        | 8,102-11,997    | 0.296 | 0.240 | 0.295  | 0.355 | 0.00 | 1.00 |
| Catcher-processor (PSC = $153,545; n = 894$ ) |              |                 |       |       |        |       |      |      |
| Region                                        | Est. num.    | Est. CI         | Mean  | 2.5%  | Median | 97.5% | P=0  | SF   |
| SE Asia                                       | 21,250       | 17,693-25,061   | 0.138 | 0.115 | 0.138  | 0.163 | 0.00 | 1.00 |
| NE Asia                                       | 91,618       | 86,372-96,856   | 0.597 | 0.563 | 0.597  | 0.631 | 0.00 | 1.00 |
| W Alaska                                      | 10,836       | 8,191-13,799    | 0.071 | 0.053 | 0.070  | 0.090 | 0.00 | 1.00 |
| Up/Mid Yukon                                  | 2,238        | 1,132-3,715     | 0.015 | 0.007 | 0.014  | 0.024 | 0.00 | 1.00 |
| SW Alaska                                     | 3,894        | 2,046-6,106     | 0.025 | 0.013 | 0.025  | 0.040 | 0.00 | 1.00 |
| E GOA/PNW                                     | 23,705       | 20,111-27,541   | 0.154 | 0.131 | 0.154  | 0.179 | 0.00 | 1.00 |
| Mothership (PSC                               | C = 50,466;  | n = 244)        |       |       |        |       |      |      |
| Region                                        | Est. num.    | Est. CI         | Mean  | 2.5%  | Median | 97.5% | P=0  | SF   |
| SE Asia                                       | 5,860        | 3,912-8,099     | 0.116 | 0.078 | 0.115  | 0.160 | 0.00 | 1.00 |
| NE Asia                                       | 29,694       | 26,365-32,955   | 0.588 | 0.522 | 0.589  | 0.653 | 0.00 | 1.00 |
| W Alaska                                      | 3,555        | 1,937-5,545     | 0.070 | 0.038 | 0.069  | 0.110 | 0.00 | 1.00 |
| Up/Mid Yukon                                  | 48           | 0-704           | 0.001 | 0.000 | 0.000  | 0.014 | 0.68 | 1.00 |
| SW Alaska                                     | 378          | 0-1,601         | 0.008 | 0.000 | 0.006  | 0.032 | 0.26 | 1.00 |
| E GOA/PNW                                     | 10,928       | 8,446-13,664    | 0.217 | 0.167 | 0.216  | 0.271 | 0.00 | 1.00 |
| Shoreside (PSC =                              | = 341,433; n | = 2,396)        |       |       |        |       |      |      |
| Region                                        | Est. num.    | Est. CI         | Mean  | 2.5%  | Median | 97.5% | P=0  | SF   |
| SE Asia                                       | 38,246       | 33,783-42,876   | 0.112 | 0.099 | 0.112  | 0.126 | 0.00 | 1.00 |
| NE Asia                                       | 183,120      | 175,869-190,427 | 0.536 | 0.515 | 0.536  | 0.558 | 0.00 | 1.00 |
| W Alaska                                      | 32,256       | 27,940-36,792   | 0.094 | 0.082 | 0.094  | 0.108 | 0.00 | 1.00 |
| Up/Mid Yukon                                  | 1,478        | 300-3,096       | 0.004 | 0.001 | 0.004  | 0.009 | 0.01 | 1.00 |
| SW Alaska                                     | 9,699        | 6,591-13,056    | 0.028 | 0.019 | 0.028  | 0.038 | 0.00 | 1.00 |
| E GOA/PNW                                     | 76,631       | 70,795-82,625   | 0.224 | 0.207 | 0.224  | 0.242 | 0.00 | 1.00 |

Age-3 (PSC = 171,647; n = 932)

| Region                                 | Est. num.    | Est. CI         | Mean  | 2.5%  | Median | 97.5% | P=0  | SF   |  |  |
|----------------------------------------|--------------|-----------------|-------|-------|--------|-------|------|------|--|--|
| SE Asia                                | 31.685       | 27.336-36.265   | 0.185 | 0.159 | 0.184  | 0.211 | 0.00 | 1.00 |  |  |
| NE Asia                                | 50,176       | 44,916-55,604   | 0.292 | 0.262 | 0.292  | 0.324 | 0.00 | 1.00 |  |  |
| W Alaska                               | 16,202       | 12,928-19,805   | 0.094 | 0.075 | 0.094  | 0.115 | 0.00 | 1.00 |  |  |
| Up/Mid Yukon                           | 875          | 210-2,015       | 0.005 | 0.001 | 0.005  | 0.012 | 0.00 | 1.00 |  |  |
| SW Alaska                              | 2,114        | 667-4,013       | 0.012 | 0.004 | 0.012  | 0.023 | 0.00 | 1.00 |  |  |
| E GOA/PNW                              | 70,592       | 65,087-76,114   | 0.411 | 0.379 | 0.411  | 0.443 | 0.00 | 1.00 |  |  |
| Age-4 (PSC = $348,836$ ; n = $1,944$ ) |              |                 |       |       |        |       |      |      |  |  |
| Region                                 | Est. num.    | Est. CI         | Mean  | 2.5%  | Median | 97.5% | P=0  | SF   |  |  |
| SE Asia                                | 26,358       | 22,176-30,837   | 0.076 | 0.064 | 0.075  | 0.088 | 0.00 | 1.00 |  |  |
| NE Asia                                | 235,135      | 227,169-242,925 | 0.674 | 0.651 | 0.674  | 0.696 | 0.00 | 1.00 |  |  |
| W Alaska                               | 32,370       | 27,466-37,621   | 0.093 | 0.079 | 0.093  | 0.108 | 0.00 | 1.00 |  |  |
| Up/Mid Yukon                           | 3,250        | 1,572-5,492     | 0.009 | 0.005 | 0.009  | 0.016 | 0.00 | 1.00 |  |  |
| SW Alaska                              | 12,691       | 9,007-16,823    | 0.036 | 0.026 | 0.036  | 0.048 | 0.00 | 1.00 |  |  |
| E GOA/PNW                              | 39,029       | 33,961-44,302   | 0.112 | 0.097 | 0.112  | 0.127 | 0.00 | 1.00 |  |  |
| Age-5 (PSC = $26$                      | (127; n = 1) | 46)             |       |       |        |       |      |      |  |  |
| Region                                 | Est. num.    | Est. CI         | Mean  | 2.5%  | Median | 97.5% | P=0  | SF   |  |  |
| SE Asia                                | 5,448        | 3,774-7,325     | 0.209 | 0.144 | 0.207  | 0.280 | 0.00 | 1.00 |  |  |
| NE Asia                                | 15,471       | 13,249-17,620   | 0.592 | 0.507 | 0.593  | 0.674 | 0.00 | 1.00 |  |  |
| W Alaska                               | 941          | 153-2,100       | 0.036 | 0.006 | 0.034  | 0.080 | 0.00 | 1.00 |  |  |
| Up/Mid Yukon                           | 232          | 12-933          | 0.009 | 0.000 | 0.005  | 0.036 | 0.00 | 1.00 |  |  |
| SW Alaska                              | 96           | 0-767           | 0.004 | 0.000 | 0.000  | 0.029 | 0.49 | 1.00 |  |  |
| E GOA/PNW                              | 3,937        | 2,547-5,565     | 0.151 | 0.097 | 0.149  | 0.213 | 0.00 | 1.00 |  |  |
| Cluster 1 Early (I                     | PSC = 189,   | 588; n = 1,151) |       |       |        |       |      |      |  |  |
| Region                                 | Est. num.    | Est. CI         | Mean  | 2.5%  | Median | 97.5% | P=0  | SF   |  |  |
| SE Asia                                | 20,120       | 16,694-23,775   | 0.106 | 0.088 | 0.106  | 0.125 | 0.00 | 1.00 |  |  |
| NE Asia                                | 93,568       | 87,801-99,341   | 0.493 | 0.463 | 0.493  | 0.524 | 0.00 | 1.00 |  |  |
| W Alaska                               | 16,129       | 12,840-19,672   | 0.085 | 0.068 | 0.085  | 0.104 | 0.00 | 1.00 |  |  |
| Up/Mid Yukon                           | 1,789        | 619-3,522       | 0.009 | 0.003 | 0.009  | 0.019 | 0.00 | 1.00 |  |  |
| SW Alaska                              | 9,226        | 6,322-12,413    | 0.049 | 0.033 | 0.048  | 0.065 | 0.00 | 1.00 |  |  |
|                                        |              |                 |       |       |        |       |      |      |  |  |

Cluster 1 Late (PSC = 12,145; n = 92)

| Region                                        | Est. num.    | Est. CI        | Mean   | 2.5%    | Median | 97.5% | P=0  | SF   |  |
|-----------------------------------------------|--------------|----------------|--------|---------|--------|-------|------|------|--|
| SE Asia                                       | 302          | 15-861         | 0.025  | 0.001   | 0.021  | 0.071 | 0.01 | 1.00 |  |
| NE Asia                                       | 4,244        | 2,989-5,577    | 0.349  | 0.246   | 0.348  | 0.459 | 0.00 | 1.00 |  |
| W Alaska                                      | 1,939        | 812-3,190      | 0.160  | 0.067   | 0.158  | 0.263 | 0.00 | 1.00 |  |
| Up/Mid Yukon                                  | 205          | 0-938          | 0.017  | 0.000   | 0.007  | 0.077 | 0.00 | 1.00 |  |
| SW Alaska                                     | 42           | 0-521          | 0.004  | 0.000   | 0.000  | 0.043 | 0.59 | 1.00 |  |
| E GOA/PNW                                     | 5,409        | 4,167-6,671    | 0.445  | 0.343   | 0.445  | 0.549 | 0.00 | 1.00 |  |
| Cluster 2 Early (PSC = $226,750; n = 1,457$ ) |              |                |        |         |        |       |      |      |  |
| Region                                        | Est. num.    | Est. C         | I Mea  | n 2.5%  | Median | 97.5% | P=0  | SF   |  |
| SE Asia                                       | 27,308       | 23,325-31,47   | 9 0.12 | 0 0.103 | 0.120  | 0.139 | 0.00 | 1.00 |  |
| NE Asia                                       | 141,358      | 135,178-147,35 | 1 0.62 | 3 0.596 | 0.623  | 0.650 | 0.00 | 1.00 |  |
| W Alaska                                      | 18,391       | 14,986-22,02   | 3 0.08 | 1 0.066 | 0.081  | 0.097 | 0.00 | 1.00 |  |
| Up/Mid Yukon                                  | 710          | 27-2,08        | 7 0.00 | 3 0.000 | 0.003  | 0.009 | 0.01 | 1.00 |  |
| SW Alaska                                     | 2,108        | 160-4,41       | 0.00   | 9 0.001 | 0.009  | 0.019 | 0.01 | 1.00 |  |
| E GOA/PNW                                     | 36,871       | 32,499-41,47   | 7 0.16 | 3 0.143 | 0.162  | 0.183 | 0.00 | 1.00 |  |
| Cluster 3 Early (I                            | PSC = 11, 13 | 58; n = 77)    |        |         |        |       |      |      |  |
| Region                                        | Est. num.    | Est. CI        | Mean   | 2.5%    | Median | 97.5% | P=0  | SF   |  |
| SE Asia                                       | 2,380        | 1,405-3,503    | 0.213  | 0.126   | 0.211  | 0.314 | 0.00 | 1.00 |  |
| NE Asia                                       | 6,154        | 4,810-7,465    | 0.552  | 0.431   | 0.552  | 0.669 | 0.00 | 1.00 |  |
| W Alaska                                      | 1,195        | 453-2,222      | 0.107  | 0.041   | 0.103  | 0.199 | 0.00 | 1.00 |  |
| Up/Mid Yukon                                  | 242          | 1-781          | 0.022  | 0.000   | 0.017  | 0.070 | 0.02 | 1.00 |  |
| SW Alaska                                     | 65           | 0-618          | 0.006  | 0.000   | 0.000  | 0.055 | 0.54 | 1.00 |  |
| E GOA/PNW                                     | 1,120        | 479-1,971      | 0.100  | 0.043   | 0.097  | 0.177 | 0.00 | 1.00 |  |
| Cluster 3 Late (PS                            | SC = 30,400  | ); n = 225)    |        |         |        |       |      |      |  |
| Region                                        | Est. num.    | Est. CI        | Mean   | 2.5%    | Median | 97.5% | P=0  | SF   |  |
| SE Asia                                       | 5,785        | 4,243-7,464    | 0.190  | 0.140   | 0.189  | 0.246 | 0.00 | 1.00 |  |
| NE Asia                                       | 15,362       | 13,263-17,460  | 0.505  | 0.436   | 0.505  | 0.574 | 0.00 | 1.00 |  |
| W Alaska                                      | 1,617        | 719-2,781      | 0.053  | 0.024   | 0.052  | 0.091 | 0.00 | 1.00 |  |
| Up/Mid Yukon                                  | 872          | 260-1,765      | 0.029  | 0.009   | 0.027  | 0.058 | 0.00 | 1.00 |  |
| SW Alaska                                     | 349          | 0-1,008        | 0.012  | 0.000   | 0.010  | 0.033 | 0.05 | 1.00 |  |
| E GOA/PNW                                     | 6,412        | 4,855-8,148    | 0.211  | 0.160   | 0.210  | 0.268 | 0.00 | 1.00 |  |

Age-3 Cluster 1 (PSC = 63,251; n = 273)

| Region                                        | Est. num.     | Est. CI          | Mean  | 2.5%  | Median | 97.5% | P=0  | SF   |
|-----------------------------------------------|---------------|------------------|-------|-------|--------|-------|------|------|
| SE Asia                                       | 10,219        | 7,537-13,219     | 0.162 | 0.119 | 0.161  | 0.209 | 0.00 | 1.00 |
| NE Asia                                       | 15,296        | 12,064-18,782    | 0.242 | 0.191 | 0.241  | 0.297 | 0.00 | 1.00 |
| W Alaska                                      | 5,190         | 3,264-7,510      | 0.082 | 0.052 | 0.081  | 0.119 | 0.00 | 1.00 |
| Up/Mid Yukon                                  | 38            | 0-570            | 0.001 | 0.000 | 0.000  | 0.009 | 0.70 | 1.00 |
| SW Alaska                                     | 1,475         | 117-3,309        | 0.023 | 0.002 | 0.022  | 0.052 | 0.02 | 1.00 |
| E GOA/PNW                                     | 31,030        | 27,126-34,881    | 0.491 | 0.429 | 0.491  | 0.551 | 0.00 | 1.00 |
| Age-3 Cluster 1 Early (PSC = 59,445; n = 240) |               |                  |       |       |        |       |      |      |
| Region                                        | Est. num.     | Est. CI          | Mean  | 2.5%  | Median | 97.5% | P=0  | SF   |
| SE Asia                                       | 9,827         | 7,109-12,856     | 0.165 | 0.120 | 0.164  | 0.216 | 0.00 | 1.00 |
| NE Asia                                       | 13,751        | 10,602-17,160    | 0.231 | 0.178 | 0.231  | 0.289 | 0.00 | 1.00 |
| W Alaska                                      | 4,251         | 2,440-6,508      | 0.072 | 0.041 | 0.070  | 0.109 | 0.00 | 1.00 |
| Up/Mid Yukon                                  | 15            | 0-482            | 0.000 | 0.000 | 0.000  | 0.008 | 0.75 | 1.00 |
| SW Alaska                                     | 1,937         | 379-4,026        | 0.033 | 0.006 | 0.031  | 0.068 | 0.00 | 1.00 |
| E GOA/PNW                                     | 29,661        | 25,719-33,600    | 0.499 | 0.433 | 0.499  | 0.565 | 0.00 | 1.00 |
| Age-3 Cluster 2 (                             | (PSC = 73, 3) | 45; n = 444)     |       |       |        |       |      |      |
| Region                                        | Est. num.     | Est. CI          | Mean  | 2.5%  | Median | 97.5% | P=0  | SF   |
| SE Asia                                       | 14,868        | 12,047-17,850    | 0.203 | 0.164 | 0.202  | 0.243 | 0.00 | 1.00 |
| NE Asia                                       | 24,188        | 20,795-27,683    | 0.330 | 0.284 | 0.330  | 0.377 | 0.00 | 1.00 |
| W Alaska                                      | 7,310         | 5,260-9,650      | 0.100 | 0.072 | 0.099  | 0.132 | 0.00 | 1.00 |
| Up/Mid Yukon                                  | 6             | 0-333            | 0.000 | 0.000 | 0.000  | 0.005 | 0.76 | 1.00 |
| SW Alaska                                     | 119           | 0-1,358          | 0.002 | 0.000 | 0.000  | 0.019 | 0.63 | 1.00 |
| E GOA/PNW                                     | 26,850        | 23,522-30,224    | 0.366 | 0.321 | 0.366  | 0.412 | 0.00 | 1.00 |
| Age-3 Cluster 2                               | Early (PSC    | = 71,060; n = 42 | 3)    |       |        |       |      |      |
| Region                                        | Est. num.     | Est. CI          | Mean  | 2.5%  | Median | 97.5% | P=0  | SF   |
| SE Asia                                       | 14,802        | 11,983-17,810    | 0.208 | 0.169 | 0.208  | 0.251 | 0.00 | 1.00 |
| NE Asia                                       | 23,022        | 19,731-26,476    | 0.324 | 0.278 | 0.324  | 0.373 | 0.00 | 1.00 |
| W Alaska                                      | 6,857         | 4,881-9,132      | 0.097 | 0.069 | 0.096  | 0.129 | 0.00 | 1.00 |
| Up/Mid Yukon                                  | 35            | 0-372            | 0.000 | 0.000 | 0.000  | 0.005 | 0.64 | 1.00 |
| SW Alaska                                     | 112           | 0-1,328          | 0.002 | 0.000 | 0.000  | 0.019 | 0.63 | 1.00 |
| E GOA/PNW                                     | 26,229        | 22,933-29,578    | 0.369 | 0.323 | 0.369  | 0.416 | 0.00 | 1.00 |

Age-3 Cluster 3 (PSC = 13,023; n = 79)

| Region                                        | Est. num.   | Est. CI       | Mean  | 2.5%  | Median | 97.5% | P=0  | SF   |
|-----------------------------------------------|-------------|---------------|-------|-------|--------|-------|------|------|
| SE Asia                                       | 3,247       | 2,097-4,552   | 0.249 | 0.161 | 0.247  | 0.349 | 0.00 | 1.00 |
| NE Asia                                       | 3,016       | 1,786-4,400   | 0.232 | 0.137 | 0.230  | 0.338 | 0.00 | 1.00 |
| W Alaska                                      | 933         | 256-1,932     | 0.072 | 0.020 | 0.067  | 0.148 | 0.00 | 1.00 |
| Up/Mid Yukon                                  | 511         | 60-1,303      | 0.039 | 0.005 | 0.035  | 0.100 | 0.00 | 1.00 |
| SW Alaska                                     | 0           | 0-214         | 0.000 | 0.000 | 0.000  | 0.016 | 0.78 | 1.00 |
| E GOA/PNW                                     | 5,313       | 3,947-6,754   | 0.408 | 0.303 | 0.407  | 0.519 | 0.00 | 1.00 |
| Age-3 Cluster 3 Late (PSC = $9,526$ ; n = 74) |             |               |       |       |        |       |      |      |
| Region                                        | Est. num.   | Est. CI       | Mean  | 2.5%  | Median | 97.5% | P=0  | SF   |
| SE Asia                                       | 2,174       | 1,331-3,156   | 0.228 | 0.140 | 0.226  | 0.331 | 0.00 | 1.00 |
| NE Asia                                       | 2,170       | 1,277-3,193   | 0.228 | 0.134 | 0.226  | 0.335 | 0.00 | 1.00 |
| W Alaska                                      | 663         | 140-1,419     | 0.070 | 0.015 | 0.065  | 0.149 | 0.00 | 1.00 |
| Up/Mid Yukon                                  | 392         | 49-996        | 0.041 | 0.005 | 0.036  | 0.105 | 0.00 | 1.00 |
| SW Alaska                                     | 0           | 0-162         | 0.000 | 0.000 | 0.000  | 0.017 | 0.78 | 1.00 |
| E GOA/PNW                                     | 4,124       | 3,060-5,222   | 0.433 | 0.321 | 0.432  | 0.548 | 0.00 | 1.00 |
| Age-3 Early (PSC                              | C = 153,156 | ; n = 791)    |       |       |        |       |      |      |
| Region                                        | Est. num.   | Est. CI       | Mean  | 2.5%  | Median | 97.5% | P=0  | SF   |
| SE Asia                                       | 27,702      | 23,511-32,162 | 0.181 | 0.154 | 0.181  | 0.210 | 0.00 | 1.00 |
| NE Asia                                       | 46,463      | 41,310-51,727 | 0.303 | 0.270 | 0.303  | 0.338 | 0.00 | 1.00 |
| W Alaska                                      | 14,287      | 11,172-17,694 | 0.093 | 0.073 | 0.093  | 0.116 | 0.00 | 1.00 |
| Up/Mid Yukon                                  | 88          | 0-763         | 0.001 | 0.000 | 0.000  | 0.005 | 0.56 | 1.00 |
| SW Alaska                                     | 1,999       | 462-3,949     | 0.013 | 0.003 | 0.013  | 0.026 | 0.01 | 1.00 |
| E GOA/PNW                                     | 62,614      | 57,300-68,036 | 0.409 | 0.374 | 0.409  | 0.444 | 0.00 | 1.00 |
| Age-3 Late (PSC                               | = 18,441;   | n = 141)      |       |       |        |       |      |      |
| Region                                        | Est. num.   | Est. CI       | Mean  | 2.5%  | Median | 97.5% | P=0  | SF   |
| SE Asia                                       | 3,645       | 2,472-4,965   | 0.198 | 0.134 | 0.196  | 0.269 | 0.00 | 1.00 |
| NE Asia                                       | 4,706       | 3,345-6,215   | 0.255 | 0.181 | 0.254  | 0.337 | 0.00 | 1.00 |
| W Alaska                                      | 1,853       | 937-2,978     | 0.100 | 0.051 | 0.099  | 0.161 | 0.00 | 1.00 |
| Up/Mid Yukon                                  | 379         | 30-1,075      | 0.021 | 0.002 | 0.018  | 0.058 | 0.00 | 1.00 |
| SW Alaska                                     | 83          | 0-556         | 0.005 | 0.000 | 0.001  | 0.030 | 0.44 | 1.00 |
| E GOA/PNW                                     | 7,772       | 6,278-9,307   | 0.421 | 0.340 | 0.421  | 0.505 | 0.00 | 1.00 |

Age-4 Cluster 1 (PSC = 128,603; n = 693)

| Region                                            | Est. num.    | Est. CI            | Mean  | 2.5%  | Median | 97.5% | P=0  | SF   |
|---------------------------------------------------|--------------|--------------------|-------|-------|--------|-------|------|------|
| SE Asia                                           | 9,639        | 7,181-12,423       | 0.075 | 0.056 | 0.074  | 0.097 | 0.00 | 1.00 |
| NE Asia                                           | 72,603       | 67,536-77,607      | 0.565 | 0.525 | 0.565  | 0.603 | 0.00 | 1.00 |
| W Alaska                                          | 12,843       | 9,647-16,250       | 0.100 | 0.075 | 0.100  | 0.126 | 0.00 | 1.00 |
| Up/Mid Yukon                                      | 1,961        | 732-3,742          | 0.015 | 0.006 | 0.015  | 0.029 | 0.00 | 1.00 |
| SW Alaska                                         | 8,411        | 5,570-11,710       | 0.065 | 0.043 | 0.065  | 0.091 | 0.00 | 1.00 |
| E GOA/PNW                                         | 23,142       | 19,378-27,154      | 0.180 | 0.151 | 0.180  | 0.211 | 0.00 | 1.00 |
| Age-4 Cluster 1 Early (PSC = $120,865; n = 647$ ) |              |                    |       |       |        |       |      |      |
| Region                                            | Est. num.    | Est. CI            | Mean  | 2.5%  | Median | 97.5% | P=0  | SF   |
| SE Asia                                           | 9,603        | 7,091-12,409       | 0.079 | 0.059 | 0.079  | 0.103 | 0.00 | 1.00 |
| NE Asia                                           | 70,121       | 65,192-74,963      | 0.580 | 0.539 | 0.580  | 0.620 | 0.00 | 1.00 |
| W Alaska                                          | 10,485       | 7,632-13,684       | 0.087 | 0.063 | 0.086  | 0.113 | 0.00 | 1.00 |
| Up/Mid Yukon                                      | 2,193        | 892-4,005          | 0.018 | 0.007 | 0.017  | 0.033 | 0.00 | 1.00 |
| SW Alaska                                         | 7,736        | 5,037-10,831       | 0.064 | 0.042 | 0.063  | 0.090 | 0.00 | 1.00 |
| E GOA/PNW                                         | 20,723       | 17,159-24,508      | 0.171 | 0.142 | 0.171  | 0.203 | 0.00 | 1.00 |
| Age-4 Cluster 2 (                                 | PSC = 149,   | 125; n = 839)      |       |       |        |       |      |      |
| Region                                            | Est. num.    | Est. CI            | Mean  | 2.5%  | Median | 97.5% | P=0  | SF   |
| SE Asia                                           | 10,426       | 7,783-13,361       | 0.070 | 0.052 | 0.070  | 0.090 | 0.00 | 1.00 |
| NE Asia                                           | 113,551      | 108,783-118,134    | 0.761 | 0.729 | 0.762  | 0.792 | 0.00 | 1.00 |
| W Alaska                                          | 11,773       | 8,616-15,141       | 0.079 | 0.058 | 0.079  | 0.102 | 0.00 | 1.00 |
| Up/Mid Yukon                                      | 1,438        | 283-3,514          | 0.010 | 0.002 | 0.008  | 0.024 | 0.00 | 1.00 |
| SW Alaska                                         | 1,353        | 0-3,229            | 0.009 | 0.000 | 0.009  | 0.022 | 0.03 | 1.00 |
| E GOA/PNW                                         | 10,582       | 7,984-13,492       | 0.071 | 0.054 | 0.071  | 0.090 | 0.00 | 1.00 |
| Age-4 Cluster 2 E                                 | Early (PSC = | = 144,480; n = 808 | 8)    |       |        |       |      |      |
| Region                                            | Est. num.    | Est. CI            | Mean  | 2.5%  | Median | 97.5% | P=0  | SF   |
| SE Asia                                           | 10,257       | 7,673-13,110       | 0.071 | 0.053 | 0.071  | 0.091 | 0.00 | 1.00 |
| NE Asia                                           | 110,371      | 105,704-114,845    | 0.764 | 0.732 | 0.764  | 0.795 | 0.00 | 1.00 |
| W Alaska                                          | 11,067       | 8,105-14,282       | 0.077 | 0.056 | 0.076  | 0.099 | 0.00 | 1.00 |
| Up/Mid Yukon                                      | 1,262        | 271-3,132          | 0.009 | 0.002 | 0.008  | 0.022 | 0.00 | 1.00 |
| SW Alaska                                         | 1,352        | 0-3,286            | 0.009 | 0.000 | 0.009  | 0.023 | 0.04 | 1.00 |
| E GOA/PNW                                         | 10,168       | 7,611-13,049       | 0.070 | 0.053 | 0.070  | 0.090 | 0.00 | 1.00 |

Age-4 Cluster 3 (PSC = 26,479; n = 168)

| Region            | Est num     | Est CI             | Mean  | 2 5%  | Median | 97 5% | P=0  | SF   |
|-------------------|-------------|--------------------|-------|-------|--------|-------|------|------|
| SE Asia           | 3 557       | 2 240 5 088        | 0.13/ | 0.085 | 0.133  | 0.102 | 0.00 | 1.00 |
| SE Asia           | 16 604      | 2,240-3,088        | 0.134 | 0.005 | 0.133  | 0.192 | 0.00 | 1.00 |
| W Alaska          | 2 000       | 1 000 2 478        | 0.027 | 0.028 | 0.028  | 0.121 | 0.00 | 1.00 |
| W Alaska          | 2,099       | 1,000-3,478        | 0.079 | 0.038 | 0.077  | 0.151 | 0.00 | 1.00 |
| CW/ Alasha        | /50         | 02 2 048           | 0.028 | 0.003 | 0.023  | 0.003 | 0.00 | 1.00 |
| Sw Alaska         | 2 (2)       | 92-2,048           | 0.032 | 0.005 | 0.029  | 0.077 | 0.01 | 1.00 |
| E GOA/PNW         | 2,636       | 1,452-4,072        | 0.100 | 0.055 | 0.098  | 0.154 | 0.00 | 1.00 |
| Age-4 Cluster 5 I | Late (PSC - | - 19,570; 11 - 115 | )     |       |        |       |      |      |
| Region            | Est. num.   | Est. CI            | Mean  | 2.5%  | Median | 97.5% | P=0  | SF   |
| SE Asia           | 2,436       | 1,341-3,764        | 0.126 | 0.069 | 0.124  | 0.194 | 0.00 | 1.00 |
| NE Asia           | 12,799      | 10,972-14,516      | 0.661 | 0.566 | 0.662  | 0.749 | 0.00 | 1.00 |
| W Alaska          | 1,154       | 372-2,243          | 0.060 | 0.019 | 0.057  | 0.116 | 0.00 | 1.00 |
| Up/Mid Yukon      | 452         | 0-1,286            | 0.023 | 0.000 | 0.020  | 0.066 | 0.03 | 1.00 |
| SW Alaska         | 876         | 158-1,925          | 0.045 | 0.008 | 0.042  | 0.099 | 0.00 | 1.00 |
| E GOA/PNW         | 1,650       | 741-2,892          | 0.085 | 0.038 | 0.082  | 0.149 | 0.00 | 1.00 |
| Age-4 Early (PSC  | C = 311,398 | ; n = 1,733)       |       |       |        |       |      |      |
| Region            | Est. num.   | Est. CI            | Mean  | 2.5%  | Median | 97.5% | P=0  | SF   |
| SE Asia           | 22,504      | 18,575-26,713      | 0.072 | 0.060 | 0.072  | 0.086 | 0.00 | 1.00 |
| NE Asia           | 213,902     | 206,567-221,135    | 0.687 | 0.663 | 0.687  | 0.710 | 0.00 | 1.00 |
| W Alaska          | 27,224      | 22,654-32,026      | 0.087 | 0.073 | 0.087  | 0.103 | 0.00 | 1.00 |
| Up/Mid Yukon      | 2,865       | 1,273-5,106        | 0.009 | 0.004 | 0.009  | 0.016 | 0.00 | 1.00 |
| SW Alaska         | 10,848      | 7,362-14,728       | 0.035 | 0.024 | 0.035  | 0.047 | 0.00 | 1.00 |
| E GOA/PNW         | 34,053      | 29,390-39,027      | 0.109 | 0.094 | 0.109  | 0.125 | 0.00 | 1.00 |
| Age-4 Late (PSC   | = 37,495;   | n = 211)           |       |       |        |       |      |      |
| Region            | Est. num.   | Est. CI            | Mean  | 2.5%  | Median | 97.5% | P=0  | SF   |
| SE Asia           | 3 655       | 2 213-5 354        | 0.097 | 0.059 | 0.096  | 0.143 | 0.00 | 1.00 |
| NE Asia           | 21 464      | 18 796-24 090      | 0.572 | 0.501 | 0.573  | 0.143 | 0.00 | 1.00 |
| W Alaska          | 4 570       | 2 816-6 566        | 0.122 | 0.075 | 0.373  | 0.042 | 0.00 | 1.00 |
| Un/Mid Vukon      | 725         | 70_1 876           | 0.010 | 0.002 | 0.121  | 0.040 | 0.00 | 1.00 |
| SW Alaska         | 1 100       | 270-2 504          | 0.019 | 0.002 | 0.017  | 0.049 | 0.00 | 1.00 |
| F COA/DNW         | 5 000       | 4 015 7 020        | 0.052 | 0.007 | 0.050  | 0.009 | 0.00 | 1.00 |
| E UUA/PINW        | 3,880       | 4,015-7,929        | 0.137 | 0.107 | 0.130  | 0.211 | 0.00 | 1.00 |

| Region                                         | Est. num.  | Est. CI     | Mean     | 2.5%  | Median | 97.5% | P=0  | SF   |  |
|------------------------------------------------|------------|-------------|----------|-------|--------|-------|------|------|--|
| SE Asia                                        | 6          | 2 - 12      | 0.082    | 0.027 | 0.078  | 0.159 | 0.00 | 1.00 |  |
| NE Asia                                        | 43         | 35 - 52     | 0.593    | 0.471 | 0.593  | 0.709 | 0.00 | 1.00 |  |
| W Alaska                                       | 9          | 4 - 17      | 0.132    | 0.059 | 0.128  | 0.225 | 0.00 | 1.00 |  |
| Up/Mid Yukon                                   | 0          | 0 - 4       | 0.009    | 0.000 | 0.004  | 0.049 | 0.35 | 1.00 |  |
| SW Alaska                                      | 2          | 0 - 8       | 0.032    | 0.000 | 0.026  | 0.105 | 0.11 | 1.00 |  |
| E GOA/PNW                                      | 11         | 6 - 18      | 0.152    | 0.075 | 0.149  | 0.248 | 0.00 | 1.00 |  |
| Salmon Excluder                                | Device: C  | ruise 3 (n  | = 110)   |       |        |       |      |      |  |
| Region                                         | Est. num.  | Est. CI     | Mean     | 2.5%  | Median | 97.5% | P=0  | SF   |  |
| SE Asia                                        | 2          | 0 - 8       | 0.026    | 0.000 | 0.023  | 0.071 | 0.03 | 1.00 |  |
| NE Asia                                        | 56         | 46 - 67     | 0.516    | 0.417 | 0.516  | 0.613 | 0.00 | 1.00 |  |
| W Alaska                                       | 6          | 2 - 14      | 0.062    | 0.016 | 0.058  | 0.126 | 0.00 | 1.00 |  |
| Up/Mid Yukon                                   | 2          | 0 - 8       | 0.026    | 0.002 | 0.023  | 0.071 | 0.00 | 1.00 |  |
| SW Alaska                                      | 8          | 3 - 16      | 0.076    | 0.026 | 0.073  | 0.142 | 0.00 | 1.00 |  |
| E GOA/PNW                                      | 32         | 23 - 43     | 0.295    | 0.209 | 0.294  | 0.387 | 0.00 | 1.00 |  |
| Salmon Excluder Device: Cruise 4 ( $n = 261$ ) |            |             |          |       |        |       |      |      |  |
| Region                                         | Est. num.  | Est. CI     | Mean     | 2.5%  | Median | 97.5% | P=0  | SF   |  |
| SE Asia                                        | 29         | 19 - 40     | 0.112    | 0.075 | 0.111  | 0.155 | 0.00 | 1.00 |  |
| NE Asia                                        | 178        | 163 - 194   | 0.685    | 0.624 | 0.686  | 0.744 | 0.00 | 1.00 |  |
| W Alaska                                       | 13         | 6 - 23      | 0.051    | 0.021 | 0.049  | 0.089 | 0.00 | 1.00 |  |
| Up/Mid Yukon                                   | 4          | 1 - 11      | 0.017    | 0.003 | 0.016  | 0.041 | 0.00 | 1.00 |  |
| SW Alaska                                      | 2          | 0 - 9       | 0.011    | 0.000 | 0.009  | 0.035 | 0.08 | 1.00 |  |
| E GOA/PNW                                      | 32         | 22 - 44     | 0.123    | 0.085 | 0.122  | 0.168 | 0.00 | 1.00 |  |
| Salmon Excluder                                | Device: Ci | ruise 4, Ha | aul 1 (n | = 90) |        |       |      |      |  |
| Region                                         | Est. num.  | Est. CI     | Mean     | 2.5%  | Median | 97.5% | P=0  | SF   |  |
| SE Asia                                        | 4          | 0 - 11      | 0.051    | 0.000 | 0.048  | 0.123 | 0.03 | 1.00 |  |
| NE Asia                                        | 71         | 62 - 80     | 0.793    | 0.690 | 0.795  | 0.886 | 0.00 | 1.00 |  |
| W Alaska                                       | 7          | 2 - 13      | 0.078    | 0.026 | 0.075  | 0.147 | 0.00 | 1.00 |  |
| Up/Mid Yukon                                   | 0          | 0 - 2       | 0.000    | 0.000 | 0.000  | 0.020 | 0.76 | 1.00 |  |
| SW Alaska                                      | 0          | 0 - 2       | 0.000    | 0.000 | 0.000  | 0.022 | 0.78 | 1.00 |  |
| E GOA/PNW                                      | 6          | 3 - 13      | 0.077    | 0.031 | 0.074  | 0.141 | 0.00 | 1.00 |  |

Salmon Excluder Device: Cruise 1 (n = 74)

| Region          | Est. num.  | Est. CI   | Mean     | 2.5%  | Median | 97.5% | P=0  | SF   |
|-----------------|------------|-----------|----------|-------|--------|-------|------|------|
| SE Asia         | 14         | 8 - 23    | 0.160    | 0.088 | 0.157  | 0.246 | 0.00 | 1.00 |
| NE Asia         | 54         | 45 - 64   | 0.589    | 0.483 | 0.590  | 0.693 | 0.00 | 1.00 |
| W Alaska        | 3          | 0 - 10    | 0.038    | 0.000 | 0.033  | 0.103 | 0.02 | 1.00 |
| Up/Mid Yukon    | 2          | 0 - 8     | 0.025    | 0.003 | 0.018  | 0.081 | 0.00 | 1.00 |
| SW Alaska       | 1          | 0 - 6     | 0.015    | 0.000 | 0.010  | 0.060 | 0.14 | 1.00 |
| E GOA/PNW       | 16         | 9 - 24    | 0.173    | 0.099 | 0.171  | 0.261 | 0.00 | 1.00 |
| Salmon Excluder | Device: Cr | uise 4, H | aul 3 (n | = 78) |        |       |      |      |
| Region          | Est. num.  | Est. CI   | Mean     | 2.5%  | Median | 97.5% | P=0  | SF   |
| SE Asia         | 9          | 4 - 15    | 0.116    | 0.055 | 0.112  | 0.195 | 0.00 | 1.00 |
| NE Asia         | 52         | 44 - 61   | 0.676    | 0.562 | 0.678  | 0.779 | 0.00 | 1.00 |
| W Alaska        | 5          | 2 - 12    | 0.073    | 0.023 | 0.068  | 0.152 | 0.00 | 1.00 |
| Up/Mid Yukon    | 0          | 0 - 4     | 0.011    | 0.000 | 0.007  | 0.047 | 0.20 | 1.00 |
| SW Alaska       | 0          | 0 - 5     | 0.012    | 0.000 | 0.005  | 0.066 | 0.38 | 1.00 |
| E GOA/PNW       | 8          | 4 - 15    | 0.113    | 0.049 | 0.109  | 0.197 | 0.00 | 1.00 |

Salmon Excluder Device: Cruise 4, Haul 2 (n = 93)



U.S. Secretary of Commerce Gina M. Raimondo

Under Secretary of Commerce for Oceans and Atmosphere Dr. Richard W. Spinrad

Assistant Administrator, National Marine Fisheries Service. Also serving as Acting Assistant Secretary of Commerce for Oceans and Atmosphere, and Deputy NOAA Administrator Janet Coit

November 2022

www.nmfs.noaa.gov

OFFICIAL BUSINESS

National Marine Fisheries Service Alaska Fisheries Science Center 7600 Sand Point Way N.E. Seattle, WA 98115-6349